The Challenge of DIMACS Challenges

Michael A. Trick
Tepper School of Business
Carnegie Mellon
USA

DIMACS 20th Birthday
November 2009
Outline

1. Outline
2. The Challenges
3. Challenge Outline
4. Value of the Challenges
5. Challenge of the Challenges
6. Future and Call for Action!
What is a DIMACS Challenge?

“ The DIMACS Implementation Challenges address questions of determining realistic algorithm performance where worst case analysis is overly pessimistic and probabilistic models are too unrealistic: experimentation can provide guides to realistic algorithm performance where analysis fails. Experimentation also brings algorithmic questions closer to the original problems that motivated theoretical work. It also tests many assumptions about implementation methods and data structures. It provides an opportunity to develop and test problem instances, instance generators, and other methods of testing and comparing performance of algorithms. And it is a step in technology transfer by providing leading edge implementations of algorithms for others to adapt. ”
What is a DIMACS Challenge?

“The DIMACS Implementation Challenges address questions of determining realistic algorithm performance where worst case analysis is overly pessimistic and probabilistic models are too unrealistic: experimentation can provide guides to realistic algorithm performance where analysis fails. Experimentation also brings algorithmic questions closer to the original problems that motivated theoretical work. It also tests many assumptions about implementation methods and data structures. It provides an opportunity to develop and test problem instances, instance generators, and other methods of testing and comparing performance of algorithms. And it is a step in technology transfer by providing leading edge implementations of algorithms for others to adapt. ”

In short, a Challenge is a challenge to see how well our theory works computationally.
What It Is Not!

It is Not a Race!

(Well, maybe a little.)
What It Is Not!

It is Not a Race!

(Well, maybe a little.)
What It Is Not!

It is Not a Race!
What It Is Not!

It is Not a Race! (Well, maybe a little.)
The Nine Challenges

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Year</th>
<th>Volume</th>
<th>Organizers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Network Flows and Matching</td>
<td>1991</td>
<td>1993</td>
<td>Johnson and C. McGeoch</td>
</tr>
<tr>
<td>2</td>
<td>NP Hard Problems</td>
<td>1993</td>
<td>1996</td>
<td>Trick</td>
</tr>
<tr>
<td>3</td>
<td>Parallel Computation</td>
<td>1994</td>
<td>1997</td>
<td>Bhatt</td>
</tr>
<tr>
<td>4</td>
<td>Computational Biology</td>
<td>1995</td>
<td></td>
<td>Vingron</td>
</tr>
<tr>
<td>5</td>
<td>Priority Queues, Dictionaries, and Multidimen-</td>
<td>1996</td>
<td>2002</td>
<td>C. McGeoch</td>
</tr>
<tr>
<td></td>
<td>sional Point Sets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Near Neighbor Searches</td>
<td>1998</td>
<td>2002</td>
<td>Goldwasser</td>
</tr>
<tr>
<td>7</td>
<td>Semidefinite Optimization</td>
<td>2000</td>
<td></td>
<td>Pataki</td>
</tr>
<tr>
<td>8</td>
<td>Traveling Salesman Problem</td>
<td>2001</td>
<td></td>
<td>Johnson, L. McGeoch, Glover, Rego</td>
</tr>
<tr>
<td>9</td>
<td>Shortest Path</td>
<td>2006</td>
<td>2009</td>
<td>Demetrescu, Goldberg, and Johnson</td>
</tr>
</tbody>
</table>
Challenge Outline

- Get a Committee (and a Coordinator)

Takes about a year or more from start to the Workshop; Volumes have taken a couple of years
Challenge Outline

- Get a Committee (and a Coordinator)
- Problem Definition

Takes about a year or more from start to the Workshop; Volumes have taken a couple of years
Challenge Outline

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list

Takes about a year or more from start to the Workshop; Volumes have taken a couple of years
Challenge Outline

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list
- Instance Format Standardization

Takes about a year or more from start to the Workshop; Volumes have taken a couple of years
Challenge Outline

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list
- Instance Format Standardization
- Instance Library

Take about a year or more from start to the Workshop; Volumes have taken a couple of years
Challenge Outline

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list
- Instance Format Standardization
- Instance Library
- Solution Verification code

Takes about a year or more from start to the Workshop; Volumes have taken a couple of years
Challenge Outline

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list
- Instance Format Standardization
- Instance Library
- Solution Verification code
- Workshop

Takes about a year or more from start to the Workshop; Volumes have taken a couple of years
Challenge Outline

- Get a Committee (and a Coordinator)
- Problem Definition
- Start advertising/get mailing list
- Instance Format Standardization
- Instance Library
- Solution Verification code
- Workshop
- Conference Volume

Takes about a year or more from start to the Workshop; Volumes have taken a couple of years
What Do We Gain from a Challenge?

We learn about algorithms: Tabu Search doesn’t compete with simulated annealing for clique and coloring.

We learn about instances: All practical graph coloring instances are easy: they have a large, obvious clique!

We get conjectures about random instances: All random satisfiability instances are easy, except for a very narrow range of parameters.
What Do We Gain from a Challenge?

- We learn about algorithms: *Tabu Search doesn’t compete with simulated annealing for clique and coloring.*
What Do We Gain from a Challenge?

- We learn about algorithms: *Tabu Search doesn’t compete with simulated annealing for clique and coloring.*
What Do We Gain from a Challenge?

- We learn about algorithms: *Tabu Search doesn’t compete with simulated annealing for clique and coloring.*
- We learn about instances: *All practical graph coloring instances are easy: they have a large, obvious clique!*
What Do We Gain from a Challenge?

- We learn about algorithms: *Tabu Search doesn’t compete with simulated annealing for clique and coloring.*

- We learn about instances: *All practical graph coloring instances are easy: they have a large, obvious clique!*
What Do We Gain from a Challenge?

- We learn about algorithms: *Tabu Search doesn’t compete with simulated annealing for clique and coloring.*
- We learn about instances: *All practical graph coloring instances are easy: they have a large, obvious clique!*
- We get conjectures about random instances: *All random satisfiability instances are easy, except for a very narrow range of parameters*
What Artifacts Do We Get from a Challenge?

We get a file format.
The Famous DIMACS Network Format
We get a library of instances.
We get useable, distributable code.
benchmark graph coloring code
continues to live on
We get a literature review.
What Artifacts Do We Get from a Challenge?

- We get a file format. *The Famous DIMACS Network Format*
What Artifacts Do We Get from a Challenge?

- We get a file format. The Famous DIMACS Network Format
What Artifacts Do We Get from a Challenge?

- We get a file format. *The Famous DIMACS Network Format*
- We get a library of instances.
What Artifacts Do We Get from a Challenge?

- We get a file format. *The Famous DIMACS Network Format*
- We get a library of instances.
What Artifacts Do We Get from a Challenge?

- We get a file format. *The Famous DIMACS Network Format*
- We get a library of instances.
- We get useable, distributable code. *benchmark graph coloring code continues to live on*
What Artifacts Do We Get from a Challenge?

- We get a file format. *The Famous DIMACS Network Format*
- We get a library of instances.
- We get useable, distributable code. *benchmark graph coloring code continues to live on*
What Artifacts Do We Get from a Challenge?

- We get a file format. *The Famous DIMACS Network Format*
- We get a library of instances.
- We get useable, distributable code. *benchmark graph coloring code continues to live on*
- We get a literature review.
Snapshot of Where We Are

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Size</th>
<th>Iterations</th>
<th>Avg. Time (s)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSJC125.5</td>
<td>125</td>
<td>3891</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>DSJC125.9</td>
<td>125</td>
<td>6961</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>DSJC250.1</td>
<td>250</td>
<td>3218</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DSJC250.5</td>
<td>250</td>
<td>15668</td>
<td>29</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td>14</td>
</tr>
</tbody>
</table>
There has been little improvement in solving random graph coloring instances in the last 15 years.
How to measure? Workshops have always attracted reasonable numbers.
Important?

How to measure? Workshops have always attracted reasonable numbers.

File formats and instances are useful 15 years later.
How to measure? Workshops have always attracted reasonable numbers.

File formats and instances are useful 15 years later.

Can form the basis for continuing activities: Johnson, Mehrotra and I continue to encourage work on graph coloring.
Conference volumes are well cited. Google scholar count for the 2nd computational challenge: 546 (easily Trick's best, even hits the top 10 for David Johnson)
Conference volumes are well cited. Google scholar count for the 2nd computational challenge: 546
Conference volumes are well cited. Google scholar count for the 2nd computational challenge: 546 (easily Trick’s best, even hits the top 10 for David Johnson)
Individual Papers Are Well Cited

<table>
<thead>
<tr>
<th>Cites</th>
<th>Per year</th>
<th>Rank</th>
<th>Authors</th>
<th>Title</th>
<th>Year</th>
<th>Publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>420</td>
<td>30.00</td>
<td>182</td>
<td>B Selman, H Kautz, ...</td>
<td>Local search strategies for satisfiability problems</td>
<td>1996</td>
<td>DIMACS Series in Discrete Mathematics and ...</td>
</tr>
<tr>
<td>274</td>
<td>14.42</td>
<td>187</td>
<td>P Godefroid</td>
<td>Using partial orders to improve automatic theorem proving</td>
<td>1991</td>
<td>‘90: proceedings of a DIMACS workshop, June 18-21, ...</td>
</tr>
<tr>
<td>255</td>
<td>19.62</td>
<td>188</td>
<td>J Gu, PW Purdom, J...</td>
<td>Algorithms for the satisifiability (SAT) ...</td>
<td>1997</td>
<td>DIMACS Series in Discrete Mathematics and ...</td>
</tr>
<tr>
<td>239</td>
<td>15.93</td>
<td>189</td>
<td>A Jepson, M Black</td>
<td>Mixture moes for optical now comp...</td>
<td>1995</td>
<td>Partitioning data sets: DIMACS workshop, April 19-21...</td>
</tr>
<tr>
<td>210</td>
<td>11.05</td>
<td>193</td>
<td>RJ Lipton</td>
<td>New directions in testing</td>
<td>1991</td>
<td>...: proceedings of a DIMACS Workshop, October 4-6, ...</td>
</tr>
<tr>
<td>188</td>
<td>14.46</td>
<td>207</td>
<td>MY Vardi</td>
<td>Why is modal logic so robustly decidable?</td>
<td>1997</td>
<td>DIMACS Series in Discrete Mathematics and ...</td>
</tr>
<tr>
<td>185</td>
<td>11.56</td>
<td>208</td>
<td>M Halle, W Idaardi</td>
<td>General properties of stress and metatheory of SAT ...</td>
<td>1994</td>
<td>Language Computations: DIMACS Workshop on Human ...</td>
</tr>
<tr>
<td>165</td>
<td>15.00</td>
<td>209</td>
<td>E Winfree, X Yang, ...</td>
<td>Universal computation via self-assass...</td>
<td>1999</td>
<td>DNA based computers II: DIMACS workshop, June 10-...</td>
</tr>
<tr>
<td>161</td>
<td>10.06</td>
<td>210</td>
<td>YLPM PARADIS, ...</td>
<td>A greedy randomized adaptive search ...</td>
<td>1994</td>
<td>... and related problems: DIMACS Workshop, May 20-21, ...</td>
</tr>
<tr>
<td>159</td>
<td>9.35</td>
<td>68</td>
<td>D Dubois, P Andre, ...</td>
<td>Sat versus unsat</td>
<td>1993</td>
<td>Second DIMACS Implementation Challenge</td>
</tr>
<tr>
<td>124</td>
<td>9.54</td>
<td>242</td>
<td>W Marrero, EM Cl...</td>
<td>Model checking for security protocols</td>
<td>1997</td>
<td>DIMACS Workshop on Design and Formal Verification of ...</td>
</tr>
<tr>
<td>123</td>
<td>7.24</td>
<td>244</td>
<td>N Alon, Y Roichman</td>
<td>Random Cayley graphs and expanders</td>
<td>1993</td>
<td>... graphs: proceedings of a DIMACS workshop, May 11-...</td>
</tr>
<tr>
<td>123</td>
<td>11.18</td>
<td>243</td>
<td>RG Downey, MR Fel...</td>
<td>Parameterized complexity: A framework for ...</td>
<td>1999</td>
<td>... from DIMACS and DIMATIA to the future: DIMATIA-DIMACS ...</td>
</tr>
<tr>
<td>118</td>
<td>9.08</td>
<td>245</td>
<td>D Luckham</td>
<td>Rapide: A language and toolset for self-assess...</td>
<td>1997</td>
<td>... methods in verification: DIMACS workshop July 24-26, ...</td>
</tr>
<tr>
<td>103</td>
<td>7.36</td>
<td>246</td>
<td>A Van Gelder, YK Tsui</td>
<td>Satisfiability testing with more reason...</td>
<td>1996</td>
<td>...: Second DIMACS Implementation Challenge, DIMACS...</td>
</tr>
<tr>
<td>97</td>
<td>8.08</td>
<td>73</td>
<td>E Winfree</td>
<td>Simulations of computing by self-assass...</td>
<td>1998</td>
<td>DIMACS: DNA-Based Computers</td>
</tr>
<tr>
<td>92</td>
<td>13.14</td>
<td>247</td>
<td>D Bryant</td>
<td>A classification of consensus methods ...</td>
<td>2003</td>
<td>... October 25-26, 2000 and October 2-5, 2001, DIMACS...</td>
</tr>
<tr>
<td>86</td>
<td>5.38</td>
<td>248</td>
<td>WP ADAMS, TA JO...</td>
<td>Improved linear programming-based ...</td>
<td>1994</td>
<td>... and related problems: DIMACS Workshop, May 20-21, ...</td>
</tr>
<tr>
<td>84</td>
<td>6.00</td>
<td>249</td>
<td>C Fleurent, JA Ferland</td>
<td>Object-oriented implementation of ...</td>
<td>1996</td>
<td>Cliques, Coloring, and Satisfiability: Second DIMACS...</td>
</tr>
<tr>
<td>83</td>
<td>0.00</td>
<td>250</td>
<td>S Poljak, Z Tuza</td>
<td>Maximum cuts and large bipartite subgraph ...</td>
<td>1996</td>
<td>Combinatorial Optimization. Papers from the DIMACS...</td>
</tr>
</tbody>
</table>
Challenge of Challenges

They take time, energy, commitment, and involve risk.
Challenge of Challenges

They take time, energy, commitment, and involve risk.

Low hanging fruit is taken
Challenge of Challenges

They take time, energy, commitment, and involve risk.

Low hanging fruit is taken ... Maybe
They take time, energy, commitment, and involve risk.

Low hanging fruit is taken ... Maybe

More subgroups (satisfiability now has its own conferences)
But it is easier now!
But it is easier now!

Initial Challenges were done pre-Internet
But it is easier now!

Initial Challenges were done pre-Internet

From the 2nd Challenge Call for Papers:
But it is easier now!

Initial Challenges were done pre-Internet

From the 2nd Challenge Call for Papers:

HOW TO PARTICIPATE. For more information about participating in the Implementation Challenge, send a request for the document "General Information" (available September 15, 1992) to challenge@dimacs.rutgers.edu. Request either LaTeX format (sent through email) or hard copy (sent through U. S. Mail), and include your return address as appropriate. Challenge materials will also be available via anonymous FTP from DIMACS, and we expect most communication with respect to the Challenge to take place over the Internet.
Using Web 2.0 for the Challenges

Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have
Using Web 2.0 for the Challenges

Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have

- Blog to keep participants up to date
Using Web 2.0 for the Challenges

Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have

- Blog to keep participants up to date
Using Web 2.0 for the Challenges

Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have

- Blog to keep participants up to date
- Wiki for creating literature review
Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have

- Blog to keep participants up to date
- Wiki for creating literature review
Using Web 2.0 for the Challenges

Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
Using Web 2.0 for the Challenges

Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
- Facebook pages to keep track of all of our fans
Using Web 2.0 for the Challenges

Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
- Facebook pages to keep track of all of our fans
Using Web 2.0 for the Challenges

Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
- Facebook pages to keep track of all of our fans
- Specialized systems to keep track of and verify (!) results
Using Web 2.0 for the Challenges

Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
- Facebook pages to keep track of all of our fans
- Specialized systems to keep track of and verify (!) results
Using Web 2.0 for the Challenges

Much easier to communicate now even compared to 10 years ago (Web 1.0). We can have

- Blog to keep participants up to date
- Wiki for creating literature review
- Twitter updates on new results and mini-challenges
- Facebook pages to keep track of all of our fans
- Specialized systems to keep track of and verify (!) results
- A more distributed coordinating team
ROIS: Registry for Optimization Instances and Solutions

Instances
- Undirected graphs (clique, coloring)
- Distance matrices (traveling tournament problem)

Benchmarks and Solutions
- Maximum Clique
- Graph Coloring
- Traveling Tournament Problem

Contact: Michael Trick trick at cmu.edu

Please note: Extremely preliminary!
ROIS: Registry for Optimization Instances and Solutions

Display Coloring Solutions

<table>
<thead>
<tr>
<th>Name</th>
<th>Nodes</th>
<th>Edges</th>
<th>UB</th>
<th>LB</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-FullIns 3</td>
<td>30</td>
<td>100</td>
<td>4</td>
<td>4</td>
<td>MeZa08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>DuRe08</td>
</tr>
<tr>
<td>1-FullIns 4</td>
<td>93</td>
<td>593</td>
<td>5</td>
<td>4</td>
<td>MeZa08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>DuRe08</td>
</tr>
<tr>
<td>1-FullIns 5</td>
<td>282</td>
<td>3247</td>
<td>6</td>
<td>4</td>
<td>MeZa08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>4</td>
<td>DuRe08</td>
</tr>
<tr>
<td>1-Insertions 4</td>
<td>67</td>
<td>232</td>
<td>5</td>
<td>3</td>
<td>MeZa08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>3</td>
<td>DuRe08</td>
</tr>
<tr>
<td>1-Insertions 5</td>
<td>202</td>
<td>1227</td>
<td>6</td>
<td>3</td>
<td>MeZa08</td>
</tr>
</tbody>
</table>
ROIS: Registy for Optimization Instances and Solutions

Add a Solution

- Graph Name: DSJC125.1
- Reference: 23:GIPaRy96
- Upper Bound (Feasible solution):
- Lower Bound:
- Choose File (optional):
 - Browse...

Add Solution Reset
Bottom line: a lot of the work can be automated!
Primary Reason for More Challenges

Our work is not done.
Primary Reason for More Challenges

Our work is not done.

Our primary goal: to define how computational work should be done, reported, and evaluated.
Primary Reason for More Challenges

Our work is not done.

Our primary goal: to define how computational work should be done, reported, and evaluated.

Still a huge amount to do.
Typically the investigator has a bright idea for a new algorithm and wants to show that it works better, in some sense, than known algorithms. This requires computational test, perhaps on a standard set of benchmark problems. If the new algorithm wins, the work is submitted for publication. Otherwise it is written off as a failure. In short, the whole affair is organized around an algorithmic race whose outcome determines the fame and fate of the contestants.

[...] The emphasis on competition is fundamentally anti-intellectual and does not build the sort of insight that in long run conduces to more effective algorithms. It tells us what algorithms are better but not why. The understanding we do accrue generally derives from initial tinkering that takes place in the design stages of the algorithm. Because only the results of the formal competition are exposed to the light of publication, the observations that are richest in information are too often conducted in an informal, uncontrolled manner.”
Typically the investigator has a bright idea for a new algorithm and wants to show that it works better, in some sense, than known algorithms. This requires computational test, perhaps on a standard set of benchmark problems. If the new algorithm wins, the work is submitted for publication. Otherwise it is written off as a failure. In short, the whole affair is organized around an algorithmic race whose outcome determines the fame and fate of the contestants. [...] The emphasis on competition is fundamentally anti-intellectual and does not build the sort of insight that in long run conduces to more effective algorithms. It tells us what algorithms are better but not why. The understanding we do accrue generally derives from initial tinkering that takes place in the design stages of the algorithm. Because only the results of the formal competition are exposed to the light of publication, the observations that are richest in information are too often conducted in an informal, uncontrolled manner.”

We publish the Losers!
Typically the investigator has a bright idea for a new algorithm and wants to show that it works better, in some sense, than known algorithms. This requires computational test, perhaps on a standard set of benchmark problems. If the new algorithm wins, the work is submitted for publication. Otherwise it is written off as a failure. In short, the whole affair is organized around an algorithmic race whose outcome determines the fame and fate of the contestants.

[...] The emphasis on competition is fundamentally anti-intellectual and does not build the sort of insight that in long run conduces to more effective algorithms. It tells us what algorithms are better but not why. The understanding we do accrue generally derives from initial tinkering that takes place in the design stages of the algorithm. Because only the results of the formal competition are exposed to the light of publication, the observations that are richest in information are too often conducted in an informal, uncontrolled manner.”

We publish the Losers!
(If they are interesting and instructive)
Conclusions and Call for Action!

The Computational Challenges have been a tremendous gift from DIMACS to the world of discrete mathematics and computer science. All the coordinators and committees deserve thanks for the hard work they put into the Challenges. The artifacts from the past Challenges continue to be useful and valuable. Technology is making Challenges easier to do all the time. There is still much to do in defining how computational work in our field should be done, reported, and evaluated.

WE NEED MORE CHALLENGES!
The Computational Challenges have been a tremendous gift from DIMACS to the world of discrete mathematics and computer science.
Conclusions and Call for Action!

The Computational Challenges have been a tremendous gift from DIMACS to the world of discrete mathematics and computer science.

All the coordinators and committees deserve thanks for the hard work they put into the Challenges.
The Computational Challenges have been a tremendous gift from DIMACS to the world of discrete mathematics and computer science.

All the coordinators and committees deserve thanks for the hard work they put into the Challenges.

The artifacts from the past Challenges continue to be useful and valuable.
Conclusions and Call for Action!

The Computational Challenges have been a tremendous gift from DIMACS to the world of discrete mathematics and computer science.

All the coordinators and committees deserve thanks for the hard work they put into the Challenges.

The artifacts from the past Challenges continue to be useful and valuable.

Technology is making Challenges easier to do all the time.

WE NEED MORE CHALLENGES!
Conclusions and Call for Action!

The Computational Challenges have been a tremendous gift from DIMACS to the world of discrete mathematics and computer science.

All the coordinators and committees deserve thanks for the hard work they put into the Challenges.

The artifacts from the past Challenges continue to be useful and valuable.

Technology is making Challenges easier to do all the time.

There is still much to do in defining how computational work in our field should be done, reported, and evaluated.
The Computational Challenges have been a tremendous gift from DIMACS to the world of discrete mathematics and computer science.

All the coordinators and committees deserve thanks for the hard work they put into the Challenges.

The artifacts from the past Challenges continue to be useful and valuable.

Technology is making Challenges easier to do all the time.

There is still much to do in defining how computational work in our field should be done, reported, and evaluated.

WE NEED MORE CHALLENGES!
A Final Thanks!

The Challenge series, and almost all of the Challenges, could not have taken place without one person:
A Final Thanks!

The Challenge series, and almost all of the Challenges, could not have taken place without one person: