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Part I: cutting planes 
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Cutting planes for MIPs 

• Cutting planes are crucial for 

solving hard MIPs 

 

• Useful to tighten bounds but… 

• … also potentially dangerous 

(heavier LPs, numerical troubles, 

etc.) 

 

• Every solver has its own recipe 

to handle them  

 

• Conservative policies are 

typically implemented (at least, 

in the default) 
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Measuring the power of a single cut 

• Too many cuts might hurt … 

 … what about a single cut? 

 

• The added single cut can be beneficial because of 

– root-node bound improvement 

– better pruning along the enumeration tree 

– but also: improved preprocessing and variable fixing, etc. 

 

• Try to measure what can be achieved by a single cut to be 

added to the given initial MIP formulation 

• … thus allowing the black-box MIP solver to take full advantage of it 
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Rules of the game 

• We are given a MIP described through an input .LP file   

      (MIP)    min { z :                   z = c x,   Ax ~ b,   xj integer  j ε J } 

   

• We are allowed to generate a single valid cut  α x ≥ α0  

 

• … and to append it to the given formulation to obtain 

 (MIP++)  min { z :  α x ≥ α0 ,  z = c x,   Ax ~ b,    xj integer  j ε J } 

 

• Don’t cheat: CPU time needed to generate the cut must be 

comparable with CPU time to solve the root-node LP 

 

• Apply a same black-box MIP solver to both MIP and MIP++ 

• … and compare computing times to solve both to proven optimality 
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Testbed  

 

 We took all the instances in the MIPLIB 2003 and COR@L libraries 

and solved them through IBM ILOG Cplex 12.2 (default setting, no 

upper cutoff, single-thread mode) on an Intel i5-750 CPU running at 

2.67GHz. 

  

 We disregarded the instances that turned out to be too “easy"  can 

be solved within just 10,000 nodes or 100 CPU seconds on our PC  

 

 Final testbed containing 38 hard instances 
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Computational setting 
 

• MIP black-box solver: IBM ILOG Cplex 12.2 (single thread) with 

default parameters; 3,600 CPU sec.s time limit on a PC. 

 

• To reduce side-effects due to heuristics: 

– Optimal solution value as input cutoff 

– No internal heuristics (useless because of the above) 

 

• Comparison among 10 different methods: 

 - Method       #0:  Cplex default (no cut added) 

 - Methods  #1-9:  nine variants that generate a single cut through 

a parametrized lifting procedure (to be described later)  
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Computational results 

Avg. sec.s Avg.  nodes Time ratio Node ratio 

Default (no cut) 533,00 64499,09 1,00 1,00 

Method #1 397,50 37194,89 0,75 0,58 

Method #2 419,22 44399,47 0,79 0,69 

Method #3 468,87 48971,72 0,88 0,76 

Method #4 491,77 46348,39 0,92 0,72 

Method #5 582,42 58223,10 1,09 0,90 

Method #6 425,38 43492,35 0,80 0,67 

Method #7 457,95 46067,74 0,86 0,71 

Method #8 446,89 44481,75 0,84 0,69 

Method #9 419,57 41549,07 0,79 0,64 
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Cases with large speedup 

NO CUT 

 

METHOD #1 

 

Time Nodes Time Nodes 

Time 

Speedup 

glass4 43,08 118.151 12,95 17.725 3,33 

neos-1451294 3.590,27 20.258 102,94 521 34,88 

neos-1593097 149,94 10.879 16,12 508 9,30 

neos-1595230 1.855,69 152.951 770,6 89.671 2,41 

neos-603073 452,4 36.530 130,75 10.017 3,46 

neos-911970 3.588,54 5.099.389 3,29 1.767 1.090,74 

ran14x18_1 3.287,59 1.480.624 2.066,70 759.265 1,59 
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Conclusions 

1. We have proposed a new cut-generation procedure  

2. … to generate just one cut to be appended to the initial 

formulation 

 

3. Computational results on a testbed of 38 hard MIPs from the 

literature have been presented 

4. … showing that an average speedup of 25% can be achieved 

w.r.t. Cplex  

 

5. A key ingredient of our method is not to overload the LP by adding 

too many cuts  single cut mode 
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Can you just describe the 10 

methods? 

• Method # 0 is the default (no cut added) 

 

• All other methods add a single cut obtained as follows (assume x ≥ 0) 

 

– Step 1. Choose a variable permutation  

 

 

– Step 2. Obtain a single valid inequality of the form 
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How about variable permutations? 

• Nine different policies for the nine methods: 

1.Pseudo random sequence   

2.Pseudo random sequence   

3.Pseudo random sequence  

4.Pseudo random sequence   

5.Pseudo random sequence   

6.Pseudo random sequence   

7.Pseudo random sequence   

8.Pseudo random sequence   

9.Pseudo random sequence   
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How about lifting?  

• To have a fast coefficient lifting, we specialized 

 

 

 

 

• into 

 

 

 

• and finally into 
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Where is the trick? 

 

•  The additional cut is of course redundant and 

  hence removed 

 

• Minor changes (including var. order in the LP file)  

 …change initial conditions (col. sequence etc.) 

 

• Tree search is very sensitive to initial conditions  

 …as branching acts as a chaotic amplifier  the pinball effect 

 

• (Some degree of) erraticism is in fact intrinsic in tree-search nature … 

• … you cannot avoid it (important for experiment design) 

• … and you better try to turn it to your advantage 

• … though you will never have a complete control of it 
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Parallel independent runs 

• Experiments with k independent runs with randomly-perturbed initial 

conditions (Cplex 12.2 default, single thread) 
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A nice surprise 

• Incidentally, during these experiments we were able to solve to 

proven optimality, for the first time, the very hard MIPLIB 2010 

instance buildingenergy 

 

• One of our parallel runs (k=2) converged after 10,899 nodes and 

2,839 CPU seconds of a IBM power7 workstation  integer solution 

of value 33,285.4433  optimal within default tolerances 

 

• We then reran Cpx12.2 (now with 8 threads) with optimality 

tolerance zero and initial upper bound of 33,285.4433  0-tolerance 

optimal solution of value 33,283.8532 found after 623,861 additional 

nodes and 7,817 CPU sec.s 
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Cplex vs Cplex 
• 20 runs of Cplex 12.2 (default, 1 thread) with scrambled rows&col.s 

• 99 instances from MIPLIB 2010  (Primal and Benchmark) 

Chile, March 2012 18 



Implications for computational tests 
 

• Testing the effectiveness of a new idea embedded in a tree-search 

method is nontrivial, as randomness can contaminate the experiments 

 

• LESSONS LEARNED (and common mistakes): 

 

– Tests are biased if  “we test our method on the training set” 

 

– The more parameters, the easier to make overtuning 

 

– Removing  “instances that are easy for our competitor” is not fair 

 

– When comparing methods A and B, the instance classification must 

be the same if A and B swap  blind wrt the “name” of the method 
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Part II: Exploiting erraticism 

• A simple bet-and-run scheme 

 

– Make KTOT independent short runs with randomized initial 

conditions, and abort them after MAX_NODES nodes 

 

– Take statistics at the end of each short run (total depth and n. of 

open nodes,  best bound, remaining gap, etc.) 

 

– Based on the above statistics, choose the most promising run 

(say the k-th one)  

 

– “Bet on” run k, i.e., restore exactly the initial conditions of the k-th 

run and reapply the solver from scratch (without node limit) 
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Discussion  
• Similar approaches already used for solving very hard problems 

(notably, QAPs etc.), by trying different parameter configurations and 

estimating the final tree size in a clever way 

 

• The underlying “philosophy” is that a BEST parameter configuration 

exists somewhere and could be found if we were clever enough  

 

• Instead, we do not pretend to find a best-possible tuning of solver’s 

param.s (whatever this means) 

• … our order of business here is to play with randomness only 

 

• We apply a very quick-and-dirty selection criterion for the run to bet on  

• … as we know that no criterion can be perfect  what we are looking for 

is just a positive correlation with the a-posteriori best run  
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Some experiments 

23 

IBM ILOG Cplex 12.2 (single thread, default without dynamic search) 

 

Time limit: 10,000 CPU sec.s  on a PC i5-750@2.67GHz 

 

Large testbed with 492 instances taken from:  



Outcome (5 short runs, 5 nodes each) 
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Validation 
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The previous table shows a 15% speedup for hard cases in class ]1,000-10,000]  

 

Validation on 10 copies of each hard instance (random rows&col.s scrambling) 



Variability reduction by root sampling 
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      Ongoing  joint  work  with  Andrea  Lodi  and  Andrea  Tramontani  



Preliminary results 
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100 instances from MIPLIB2010 (benchmark+primal) with high variability   

 

Variability score (the larger the more variability); ticks=deterministic CPU time 
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Conclusions 
• High-sensitivity to initial conditions is well accepted (and exploited) by the 

heuristic community, but is still viewed as a drawback within an exact 

search method  

 

• However, one can argue that exact tree search methods are just heuristics 

designed (and tuned) to eventually prove optimality  

 

• We  have outlined possible approaches to actually turn erraticism to one's 

advantage within an exact tree-search method (better performance and/or 

less variability) 

 

• FUTURE RESEARCH  

– More clever selection of the run to bet on?  Better classification 

methods (support vector machine & alike)?  

– Better ways to exploit sampled root-node information? 

– Borrow ideas from metaheuristic community (multi-start, GRASP, etc.) 
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