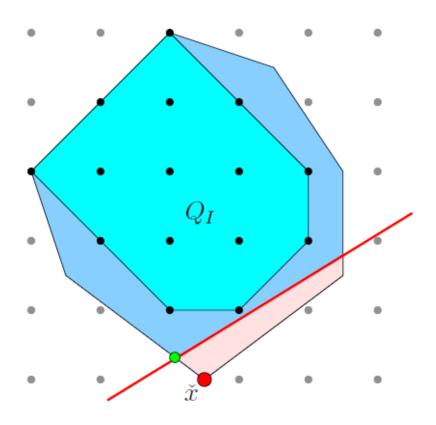
On the role of randomness in exact tree search methods

Matteo Fischetti, University of Padova (based on joint work with Michele Monaci)

Part I: cutting planes

Cutting planes for MIPs

- Cutting planes are crucial for solving hard MIPs
- Useful to tighten bounds but...
- ... also potentially dangerous (heavier LPs, numerical troubles, etc.)
- Every solver has its own recipe to handle them
- Conservative policies are typically implemented (at least, in the default)



Measuring the power of a single cut

• Too many cuts might hurt ...

... what about a **single** cut?

- The added single cut can be beneficial because of
 - root-node bound improvement
 - better pruning along the enumeration tree
 - but also: improved preprocessing and variable fixing, etc.
- Try to measure what can be achieved by a single cut to be added to the given initial MIP formulation
- ... thus allowing the black-box MIP solver to take full advantage of it

Rules of the game

- We are given a MIP described through an input .LP file

 (MIP) min { z : z = c x, Ax ~ b, x_i integer j ε J }
- We are allowed to generate a **single** valid cut $\alpha \mathbf{x} \ge \alpha_0$
- ... and to append it to the given formulation to obtain
 (MIP++) min { z : α x ≥ α₀, z = c x, Ax ~ b, x_i integer j ε J }
- Don't cheat: CPU time needed to generate the cut must be comparable with CPU time to solve the root-node LP
- Apply a same black-box MIP solver to both MIP and MIP++
- ... and compare computing times to solve both to proven optimality

Testbed

- ✓ We took all the instances in the MIPLIB 2003 and COR@L libraries and solved them through IBM ILOG Cplex 12.2 (default setting, no upper cutoff, single-thread mode) on an Intel i5-750 CPU running at 2.67GHz.
- ✓ We disregarded the instances that turned out to be too "easy" → can be solved within just 10,000 nodes or 100 CPU seconds on our PC
- ✓ Final testbed containing 38 hard instances

Computational setting

- MIP black-box solver: IBM ILOG Cplex 12.2 (single thread) with default parameters; 3,600 CPU sec.s time limit on a PC.
- To reduce side-effects due to heuristics:
 - Optimal solution value as input cutoff
 - No internal heuristics (useless because of the above)
- Comparison among **10** different methods:
 - Method **#0**: Cplex default (no cut added)
 - Methods **#1-9**: nine variants that generate a single cut through a **parametrized lifting** procedure (to be described later)

Computational results

	Avg. sec.s	Avg. nodes	Time ratio	Node ratio
Default (no cut)	533,00	64499,09	1,00	1,00
Method #1	397,50	37194,89	0,75	0,58
Method #2	419,22	44399,47	0,79	0,69
Method #3	468,87	48971,72	0,88	0,76
Method #4	491,77	46348,39	0,92	0,72
Method #5	582,42	58223,10	1,09	0,90
Method #6	425,38	43492,35	0,80	0,67
Method #7	457,95	46067,74	0,86	0,71
Method #8	446,89	44481,75	0,84	0,69
Method #9	419,57	41549,07	0,79	0,64

Cases with large speedup

	NO CUT		METHO		
	Time	Nodes	Time	Nodes	Time Speedup
glass4	43,08	118.151	12,95	17.725	3,33
neos-1451294	3.590,27	20.258	102,94	521	34,88
neos-1593097	149,94	10.879	16,12	508	9,30
neos-1595230	1.855,69	152.951	770,6	89.671	2,41
neos-603073	452,4	36.530	130,75	10.017	3,46
neos-911970	3.588,54	5.099.389	3,29	1.767	1.090,74
11602-3113/0	3.300,34	2.099.309	3,29	1.707	1.090,74
ran14x18_1	3.287,59	1.480.624	2.066,70	759.265	1,59

Conclusions

- 1. We have proposed a new cut-generation procedure
- 2. ... to generate **just one cut** to be appended to the initial formulation
- 3. Computational results on a testbed of 38 hard MIPs from the literature have been presented
- 4. ... showing that an **average speedup of 25%** can be achieved w.r.t. Cplex
- A key ingredient of our method is not to overload the LP by adding too many cuts → single cut mode

Can you just describe the 10 methods?

- Method # 0 is the default (no cut added)
- All other methods add a single cut obtained as follows (assume $x \ge 0$)
 - Step 1. Choose a variable permutation

$$x_{\pi(1)}, \cdots, x_{\pi(n)}$$

- Step 2. Obtain a single valid inequality of the form

$$\sum_{i=1}^{n} \alpha_{\pi(i)} x_{\pi(i)} \ge \alpha_0$$

How about variable permutations?

- Nine different policies for the nine methods:
 - **Seed =** 1. Pseudo random sequence
 - 2. Pseudo random sequence
 - 3. Pseudo random sequence
 - 4. Pseudo random sequence
 - 5. Pseudo random sequence
 - 6. Pseudo random sequence
 - 7. Pseudo random sequence
 - 8. Pseudo random sequence
 - 9. Pseudo random sequence

How about lifting?

• To have a fast coefficient lifting, we specialized

٠

•

into

$$\sum_{i=1}^{n} \alpha_{\pi(i)} x_{\pi(i)} \ge \alpha_{0}$$

$$\sum_{i=1}^{n} 1 \cdot x_{\pi(i)} \ge \alpha_{0}$$
and finally into

$$\sum_{i=1}^{n} 1 \cdot x_{\pi(i)} \ge -1$$

Where is the trick?

- The additional cut is of course redundant and hence removed
- Minor changes (including var. order in the LP file) ...change initial conditions (col. sequence etc.)

- Tree search is very sensitive to initial conditions
 ...as branching acts as a chaotic amplifier → the pinball effect
- (Some degree of) erraticism is in fact **intrinsic** in tree-search nature ...
- ... you cannot avoid it (important for experiment design)
- ... and you better try to turn it to your advantage
 - ... though you will never have a complete control of it

Parallel independent runs

• Experiments with *k* independent runs with randomly-perturbed initial conditions (Cplex 12.2 default, single thread)

# executions	# uns	# nodes		# nodes $#$ LP iter.	
k		geom. mean	aritm. mean	geom. mean	aritm. mean
1	11	13,207	$320,\!138$	2,212,849	$9,\!882,\!765$
2	7	7,781	$266,\!811$	1,444,085	$8,\!104,\!845$
3	5	6,344	$254,\!196$	$1,\!170,\!356$	$7,\!118,\!396$
5	5	$5,\!601$	238,561	1,090,606	$6,\!574,\!864$
10	4	4,445	$217,\!472$	864,700	$5,\!890,\!291$
25	2	3,060	$175,\!976$	680,443	$5,\!648,\!135$
50	1	2,192	159,203	$494,\!159$	4,660,565
100	0	$1,\!880$	$149,\!399$	$424,\!593$	3,731,679

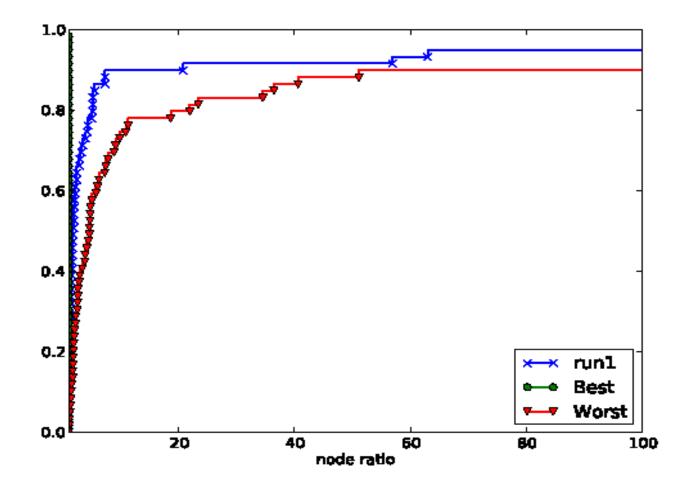
Table 1: Reduction in the number of nodes by exploiting randomness (58 instances)

A nice surprise

- Incidentally, during these experiments we were able to solve to proven optimality, for the first time, the very hard MIPLIB 2010 instance buildingenergy
- One of our parallel runs (k=2) converged after 10,899 nodes and 2,839 CPU seconds of a IBM power7 workstation → integer solution of value 33,285.4433 → optimal within default tolerances
- We then reran Cpx12.2 (now with 8 threads) with optimality tolerance zero and initial upper bound of 33,285.4433 → 0-tolerance optimal solution of value 33,283.8532 found after 623,861 additional nodes and 7,817 CPU sec.s

Cplex vs Cplex

- 20 runs of Cplex 12.2 (default, 1 thread) with scrambled rows&col.s
- 99 instances from MIPLIB 2010 (Primal and Benchmark)



Implications for computational tests

- Testing the effectiveness of a new idea embedded in a tree-search method is **nontrivial**, as randomness can contaminate the experiments
- LESSONS LEARNED (and common mistakes):
 - Tests are biased if "we test our method on the training set"
 - The more parameters, the easier to make **overtuning**
 - Removing "instances that are **easy** for our competitor" is not fair
 - When comparing methods A and B, the instance classification must be the same if A and B swap → blind wrt the "name" of the method

Part II: Exploiting erraticism

- A simple **bet-and-run** scheme
 - Make KTOT independent short runs with randomized initial conditions, and abort them after MAX_NODES nodes
 - Take statistics at the end of each short run (total depth and n. of open nodes, best bound, remaining gap, etc.)
 - Based on the above statistics, choose the most promising run (say the k-th one)
 - "Bet on" run k, i.e., restore exactly the initial conditions of the k-th run and reapply the solver from scratch (without node limit)

Discussion

- Similar approaches already used for solving very hard problems (notably, QAPs etc.), by trying different parameter configurations and estimating the final tree size in a clever way
- The underlying "philosophy" is that a **BEST parameter configuration** exists somewhere and could be found if we were clever enough
- Instead, we do not pretend to find a best-possible tuning of solver's param.s (whatever this means)
- ... our order of business here is to play with **randomness** only
- We apply a **very quick-and-dirty** selection criterion for the run to bet on
- ... as we know that no criterion can be perfect → what we are looking for is just a positive correlation with the a-posteriori best run

Some experiments

IBM ILOG Cplex 12.2 (single thread, default without dynamic search)

Time limit: 10,000 CPU sec.s on a PC i5-750@2.67GHz

Large testbed with 492 instances taken from:

- The COR@L library [2]. We considered all the 372 instances in the library, and removed two instances, namely neos-1417043 which is just an LP model, and neos-578379 which cannot be downloaded in a correct format, plus three instances (neos-1346382, neos-933364 and neos-641591) that were duplicated in the library; thus we got 367 problems.
- The recent MIPLIB 2010 library of instances [11]. We considered all the 166 in the library that belong to classes benchmark and tree, plus all the instances that were marked as hard.

Outcome (5 short runs, 5 nodes each)

Best time range	Algorithm	# opt.	Time	%incr	# Nodes	%incr	$T_{\rm last}$	%incr
	Cplex 12.2	52	0.2	0.0	5	0.0		
]0-1]	bet-and-run	52	0.3	39.8	5	3.1	0.2	-4.0
	\mathbf{best}	52	0.2	-4.7	5	-6.6		
	Cplex 12.2	76	3.8	0.0	48	0.0		
]1-10]	bet-and-run	76	5.3	39.6	39	-17.7	3.2	-15.7
	\mathbf{best}	76	3.2	-17.0	32	-32.6		
	Cplex 12.2	82	40.2	0.0	983	0.0		
]10-100]	bet-and-run	83	51.4	28.0	782	-20.4	32.9	-18.0
	\mathbf{best}	83	31.5	-21.5	680	-30.8		
	Cplex 12.2	60	402.1	0.0	$7,\!105$	0.0		
]100-1,000]	bet-and-run	60	515.1	28.1	6,760	-4.8	354.8	-11.8
	\mathbf{best}	61	310.6	-22.8	5,225	-26.5		
	Cplex 12.2	43	5,214.4	0.0	210,764	0.0		
]1,000-10,000]	bet-and-run	46	4,473.4	-14.2	179,427	-14.9	$4,\!167.0$	-20.1
	\mathbf{best}	50	$3,\!198.3$	-38.7	$134,\!354$	-36.3		

Table 2: Results on all the 492 instances in our testbed (geometric means)

Validation

The previous table shows a 15% speedup for hard cases in class]1,000-10,000]

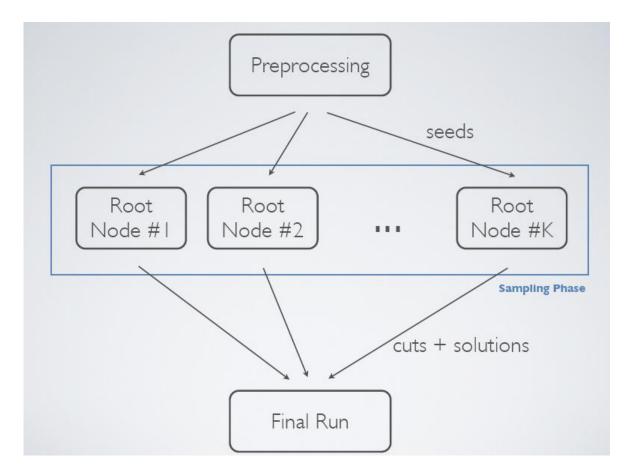
Validation on 10 copies of each hard instance (random rows&col.s scrambling)

Best time range	Algorithm	# opt.	Time	%incr	# Nodes	%incr	$T_{\rm last}$	%incr
	Cplex 12.2	6	31.7	0.0	20,126	0.0		
]10-100]	bet-and-run	5	111.2	250.6	$69,\!648$	246.1	106.2	234.8
	\mathbf{best}	6	31.7	0.0	$20,\!126$	0.0		
	Cplex 12.2	58	1,001.1	0.0	10,527	0.0		
]100-1,000]	bet-and-run	58	1,249.8	24.9	8,785	-16.6	917.8	-8.3
	\mathbf{best}	62	553.7	-44.7	$5,\!247$	-50.2		
	Cplex 12.2	299	4,928.5	0.0	427,650	0.0		
$]1,\!00010,\!000]$	bet-and-run	312	4,301.6	-12.7	$348,\!238$	-18.6	4,100.6	-16.8
	\mathbf{best}	330	$3,\!278.4$	-33.5	$285,\!220$	-33.3		
	Cplex 12.2	363	$6,\!298.5$	0.0	413,615	0.0		
< 10,000	bet-and-run	375	5,996.2	-4.8	$355,\!430$	-14.1	5,572.1	-11.5
	\mathbf{best}	398	4,408.6	-30.0	$285,\!435$	-31.0		

Table 3: Results on 10 copies for 48 hard instances (geometric mean)

Variability reduction by root sampling

Ongoing joint work with Andrea Lodi and Andrea Tramontani



Preliminary results

100 instances from MIPLIB2010 (benchmark+primal) with high variability

Variability score (the larger the more variability); ticks=deterministic CPU time

	Variability scores					
	method	ticks	nodes			
easy	срх	0.48	0.80			
Casy	ksample	0.15	0.29			
hard	срх	0.43	0.47			
	ksample	0.41	0.44			
all	срх	0.45	0.61			
	ksample	0.30	0.38			

27

	Per	formance	
	method	ticks	nodes
easy	срх	19,407	17.95
	ksample	3,351	7.86
hard	срх	214,944	23,707.06
	ksample	205,367	21,337.78
all	срх	78,508	1,155.33
	ksample	39,251	787.81

Conclusions

- High-sensitivity to initial conditions is well accepted (and exploited) by the heuristic community, but is still viewed as a drawback within an exact search method
- However, one can argue that exact tree search methods are just heuristics designed (and tuned) to eventually prove optimality
- We have outlined possible approaches to actually turn erraticism to one's advantage within an exact tree-search method (better performance and/or less variability)

• FUTURE RESEARCH

- More clever selection of the run to bet on? Better classification methods (support vector machine & alike)?
- Better ways to exploit sampled root-node information?
- Borrow ideas from metaheuristic community (multi-start, GRASP, etc.)