
On the role of randomness

in exact tree search methods

Matheuristic 2012, Angra dos Reis, September 2012 1

Matteo Fischetti, University of Padova

(based on joint work with Michele Monaci)

Part I: cutting planes

2

Cutting planes for MIPs

• Cutting planes are crucial for

solving hard MIPs

• Useful to tighten bounds but…

• … also potentially dangerous

(heavier LPs, numerical troubles,

etc.)

• Every solver has its own recipe

to handle them

• Conservative policies are

typically implemented (at least,

in the default)

3

Measuring the power of a single cut

• Too many cuts might hurt …

 … what about a single cut?

• The added single cut can be beneficial because of

– root-node bound improvement

– better pruning along the enumeration tree

– but also: improved preprocessing and variable fixing, etc.

• Try to measure what can be achieved by a single cut to be

added to the given initial MIP formulation

• … thus allowing the black-box MIP solver to take full advantage of it

4

Rules of the game

• We are given a MIP described through an input .LP file

 (MIP) min { z : z = c x, Ax ~ b, xj integer j ε J }

• We are allowed to generate a single valid cut α x ≥ α0

• … and to append it to the given formulation to obtain

 (MIP++) min { z : α x ≥ α0 , z = c x, Ax ~ b, xj integer j ε J }

• Don’t cheat: CPU time needed to generate the cut must be

comparable with CPU time to solve the root-node LP

• Apply a same black-box MIP solver to both MIP and MIP++

• … and compare computing times to solve both to proven optimality

5

Testbed

 We took all the instances in the MIPLIB 2003 and COR@L libraries

and solved them through IBM ILOG Cplex 12.2 (default setting, no

upper cutoff, single-thread mode) on an Intel i5-750 CPU running at

2.67GHz.

 We disregarded the instances that turned out to be too “easy"  can

be solved within just 10,000 nodes or 100 CPU seconds on our PC

 Final testbed containing 38 hard instances

6

Computational setting

• MIP black-box solver: IBM ILOG Cplex 12.2 (single thread) with

default parameters; 3,600 CPU sec.s time limit on a PC.

• To reduce side-effects due to heuristics:

– Optimal solution value as input cutoff

– No internal heuristics (useless because of the above)

• Comparison among 10 different methods:

 - Method #0: Cplex default (no cut added)

 - Methods #1-9: nine variants that generate a single cut through

a parametrized lifting procedure (to be described later)

7

Computational results

Avg. sec.s Avg. nodes Time ratio Node ratio

Default (no cut) 533,00 64499,09 1,00 1,00

Method #1 397,50 37194,89 0,75 0,58

Method #2 419,22 44399,47 0,79 0,69

Method #3 468,87 48971,72 0,88 0,76

Method #4 491,77 46348,39 0,92 0,72

Method #5 582,42 58223,10 1,09 0,90

Method #6 425,38 43492,35 0,80 0,67

Method #7 457,95 46067,74 0,86 0,71

Method #8 446,89 44481,75 0,84 0,69

Method #9 419,57 41549,07 0,79 0,64

8

Cases with large speedup

NO CUT

METHOD #1

Time Nodes Time Nodes

Time

Speedup

glass4 43,08 118.151 12,95 17.725 3,33

neos-1451294 3.590,27 20.258 102,94 521 34,88

neos-1593097 149,94 10.879 16,12 508 9,30

neos-1595230 1.855,69 152.951 770,6 89.671 2,41

neos-603073 452,4 36.530 130,75 10.017 3,46

neos-911970 3.588,54 5.099.389 3,29 1.767 1.090,74

ran14x18_1 3.287,59 1.480.624 2.066,70 759.265 1,59

9

Conclusions

1. We have proposed a new cut-generation procedure

2. … to generate just one cut to be appended to the initial

formulation

3. Computational results on a testbed of 38 hard MIPs from the

literature have been presented

4. … showing that an average speedup of 25% can be achieved

w.r.t. Cplex

5. A key ingredient of our method is not to overload the LP by adding

too many cuts  single cut mode

11

Can you just describe the 10

methods?

• Method # 0 is the default (no cut added)

• All other methods add a single cut obtained as follows (assume x ≥ 0)

– Step 1. Choose a variable permutation

– Step 2. Obtain a single valid inequality of the form

12

How about variable permutations?

• Nine different policies for the nine methods:

1.Pseudo random sequence

2.Pseudo random sequence

3.Pseudo random sequence

4.Pseudo random sequence

5.Pseudo random sequence

6.Pseudo random sequence

7.Pseudo random sequence

8.Pseudo random sequence

9.Pseudo random sequence

13

Seed =

How about lifting?

• To have a fast coefficient lifting, we specialized

• into

• and finally into

14

Where is the trick?

• The additional cut is of course redundant and

 hence removed

• Minor changes (including var. order in the LP file)

 …change initial conditions (col. sequence etc.)

• Tree search is very sensitive to initial conditions

 …as branching acts as a chaotic amplifier  the pinball effect

• (Some degree of) erraticism is in fact intrinsic in tree-search nature …

• … you cannot avoid it (important for experiment design)

• … and you better try to turn it to your advantage

• … though you will never have a complete control of it

15

Parallel independent runs

• Experiments with k independent runs with randomly-perturbed initial

conditions (Cplex 12.2 default, single thread)

16

A nice surprise

• Incidentally, during these experiments we were able to solve to

proven optimality, for the first time, the very hard MIPLIB 2010

instance buildingenergy

• One of our parallel runs (k=2) converged after 10,899 nodes and

2,839 CPU seconds of a IBM power7 workstation  integer solution

of value 33,285.4433  optimal within default tolerances

• We then reran Cpx12.2 (now with 8 threads) with optimality

tolerance zero and initial upper bound of 33,285.4433  0-tolerance

optimal solution of value 33,283.8532 found after 623,861 additional

nodes and 7,817 CPU sec.s

17

Cplex vs Cplex
• 20 runs of Cplex 12.2 (default, 1 thread) with scrambled rows&col.s

• 99 instances from MIPLIB 2010 (Primal and Benchmark)

Chile, March 2012 18

Implications for computational tests

• Testing the effectiveness of a new idea embedded in a tree-search

method is nontrivial, as randomness can contaminate the experiments

• LESSONS LEARNED (and common mistakes):

– Tests are biased if “we test our method on the training set”

– The more parameters, the easier to make overtuning

– Removing “instances that are easy for our competitor” is not fair

– When comparing methods A and B, the instance classification must

be the same if A and B swap  blind wrt the “name” of the method

 19

Part II: Exploiting erraticism

• A simple bet-and-run scheme

– Make KTOT independent short runs with randomized initial

conditions, and abort them after MAX_NODES nodes

– Take statistics at the end of each short run (total depth and n. of

open nodes, best bound, remaining gap, etc.)

– Based on the above statistics, choose the most promising run

(say the k-th one)

– “Bet on” run k, i.e., restore exactly the initial conditions of the k-th

run and reapply the solver from scratch (without node limit)

 21

Discussion
• Similar approaches already used for solving very hard problems

(notably, QAPs etc.), by trying different parameter configurations and

estimating the final tree size in a clever way

• The underlying “philosophy” is that a BEST parameter configuration

exists somewhere and could be found if we were clever enough

• Instead, we do not pretend to find a best-possible tuning of solver’s

param.s (whatever this means)

• … our order of business here is to play with randomness only

• We apply a very quick-and-dirty selection criterion for the run to bet on

• … as we know that no criterion can be perfect  what we are looking for

is just a positive correlation with the a-posteriori best run

22

Some experiments

23

IBM ILOG Cplex 12.2 (single thread, default without dynamic search)

Time limit: 10,000 CPU sec.s on a PC i5-750@2.67GHz

Large testbed with 492 instances taken from:

Outcome (5 short runs, 5 nodes each)

24

Validation

25

The previous table shows a 15% speedup for hard cases in class]1,000-10,000]

Validation on 10 copies of each hard instance (random rows&col.s scrambling)

Variability reduction by root sampling

 26

 Ongoing joint work with Andrea Lodi and Andrea Tramontani

Preliminary results

 27

100 instances from MIPLIB2010 (benchmark+primal) with high variability

Variability score (the larger the more variability); ticks=deterministic CPU time

 28

Conclusions
• High-sensitivity to initial conditions is well accepted (and exploited) by the

heuristic community, but is still viewed as a drawback within an exact

search method

• However, one can argue that exact tree search methods are just heuristics

designed (and tuned) to eventually prove optimality

• We have outlined possible approaches to actually turn erraticism to one's

advantage within an exact tree-search method (better performance and/or

less variability)

• FUTURE RESEARCH

– More clever selection of the run to bet on? Better classification

methods (support vector machine & alike)?

– Better ways to exploit sampled root-node information?

– Borrow ideas from metaheuristic community (multi-start, GRASP, etc.)

29

