On the role of randomness
INn exact tree search methods

Matteo Fischetti, University of Padova
(based on joint work with Michele Monaci)

|

S :
b P

Matheuristic 2012, Angra dos Reis, September 2012

Part |. cutting planes

THE POWER oF

Cutting planes for MIPs

Cutting planes are crucial for
solving hard MIPs

Useful to tighten bounds but...

... also potentially dangerous
(heavier LPs, numerical troubles,
etc.)

Every solver has its own recipe
to handle them

Conservative policies are
typically implemented (at least,
in the default)

Measuring the power of a single cut

Too many cuts might hurt ...
... what about a single cut?

The added single cut can be beneficial because of
— root-node bound improvement
— Dbetter pruning along the enumeration tree
— but also: improved preprocessing and variable fixing, etc.

Try to measure what can be achieved by a single cut to be
added to the given initial MIP formulation

... thus allowing the black-box MIP solver to take full advantage of it

Rules of the game

We are given a MIP described through an input .LP file
(MIP) min{z: Z=CcX, AX~Db, xinteger J€J}

We are allowed to generate a single valid cut a x 2 a;

... and to append it to the given formulation to obtain
(MIP++) min{z: ax2a,, z=cX, AX~b, Xinteger J€J}

Don’t cheat: CPU time needed to generate the cut must be
comparable with CPU time to solve the root-node LP

Apply a same black-box MIP solver to both MIP and MIP++
... and compare computing times to solve both to proven optimality

Testbed

v" We took all the instances in the MIPLIB 2003 and COR@L libraries
and solved them through IBM ILOG Cplex 12.2 (default setting, no

upper cutoff, single-thread mode) on an Intel i5-750 CPU running at
2.67GHz.

v" We disregarded the instances that turned out to be too “easy" - can
be solved within just 10,000 nodes or 100 CPU seconds on our PC

v Final testbed containing 38 hard instances

Computational setting

MIP black-box solver: IBM ILOG Cplex 12.2 (single thread) with
default parameters; 3,600 CPU sec.s time limit on a PC.

To reduce side-effects due to heuristics:
— Optimal solution value as input cutoff
— No internal heuristics (useless because of the above)

Comparison among 10 different methods:
- Method #0: Cplex default (no cut added)

- Methods #1-9: nine variants that generate a single cut through
a parametrized lifting procedure (to be described later)

Computational results

| Avg.secs | Avg. nodes | Timeratio | Noderatio _

Default (no cut) 533,00 64499,09 1,00 1,00
Method #1 397,50 37194,89 0,75 0,58
Method #2 419,22 44399,47 0,79 0,69
Method #3 468,87 48971,72 0,88 0,76
Method #4 491,77 46348,39 0,92 0,72
Method #5 582,42 58223,10 1,09 0,90
Method #6 425,38 43492,35 0,80 0,67
Method #7 457,95 46067,74 0,86 0,71
Method #8 446,89 44481,75 0,84 0,69

Method #9 419,57 41549,07 0,79 0,64

Cases with large speedup

glass4

neos-1451294
neos-1593097
neos-1595230

neos-603073

neos-911970

ranl4x18 1

Time
43,08
3.590,27
149,94
1.855,69

452,4

3.588,54

3.287,59

Nodes

118.151

20.258

10.879

152.951

36.530

5.099.389

1.480.624

Time
12,95
102,94
16,12
770,6

130,75

3,29

2.066,70

Nodes

17.725

521

508

89.671

10.017

1.767

759.265

Time
Speedup

3,33
34,88
9,30
2,41

3,46

1.090,74

1,59

9

Conclusions

We have proposed a new cut-generation procedure

... to generate just one cut to be appended to the initial
formulation

Computational results on a testbed of 38 hard MIPs from the
literature have been presented

... showing that an average speedup of 25% can be achieved
w.r.t. Cplex

A key ingredient of our method is not to overload the LP by adding
too many cuts - single cut mode

11

Can you just describe the 10
methods?

 Method # 0 is the default (no cut added)
« All other methods add a single cut obtained as follows (assume x = 0)

— Step 1. Choose a variable permutation
L)y """y Lr(n)

— Step 2. Obtain a single valid inequality of the form

D Qi Ta(iy) >
i=1

12

How about variable permutations?

Nine different policies for the nine methods:
Seed = 1.Pseudo random sequence
2.Pseudo random sequence
3.Pseudo random sequence
4.Pseudo random sequence
5.Pseudo random sequence
6.Pseudo random sequence
7.Pseudo random sequence
8.Pseudo random sequence
9.Pseudo random sequence

13

 Into

How about lifting?

« To have a fast coefficient lifting, we specialized

D Q) Ta(iy > Qg
i=1

n
21 i 2 ag
1=1

n
. d finally int
and finally into Z]. :LW(%) Z 1
1=1

14

Where Is the trick?

The additional cut is of course redundant and
hence removed

Minor changes (including var. order in the LP file)
...change initial conditions (col. sequence etc.)

Tree search is very sensitive to initial conditions
...as branching acts as a chaotic amplifier > the pinball effect

(Some degree of) erraticism is in fact intrinsic in tree-search nature ...
... you cannot avoid it (important for experiment design)

... and you better try to turn it to your advantage

... though you will never have a complete control of it 15

Parallel independent runs

« Experiments with k independent runs with randomly-perturbed initial
conditions (Cplex 12.2 default, single thread)

executions | # uns # nodes # LP iter.
k geom. mean | aritm. mean | geom. mean | aritm. mean
1 11 13,207 320,138 2,212,849 0,882,765
2 7 7,781 206,811 1,444,085 8,104,845
3 5 6,344 254,196 1,170,356 7,115,396
5 5 5,601 238,561 1,090,606 6,574,864
10 4 4,445 217472 864,700 5,890,291
25 2 3,060 175,976 680,443 5,648,135
50 1 2,192 159,203 494,159 4,660,565
100 0 1,880 149,399 424,593 3,731,679

Table 1: Reduction in the number of nodes by exploiting randomness (58

instances)

16

A nice surprise

* Incidentally, during these experiments we were able to solve to
proven optimality, for the first time, the very hard MIPLIB 2010
Instance buildingenergy

* One of our parallel runs (k=2) converged after 10,899 nodes and
2,839 CPU seconds of a IBM power7 workstation - integer solution
of value 33,285.4433 - optimal within default tolerances

 We then reran Cpx12.2 (now with 8 threads) with optimality
tolerance zero and initial upper bound of 33,285.4433 - 0O-tolerance
optimal solution of value 33,283.8532 found after 623,861 additional
nodes and 7,817 CPU sec.s

17

Cplex vs Cplex

20 runs of Cplex 12.2 (default, 1 thread) with scrambled rowsé&col.s
99 instances from MIPLIB 2010 (Primal and Benchmark)

= runl 1

—a PBast
—r Warst

0.qQ

20 40 (-]
node rato

100

18

Implications for computational tests

« Testing the effectiveness of a new idea embedded in a tree-search
method is nontrivial, as randomness can contaminate the experiments

« LESSONS LEARNED (and common mistakes):
— Tests are biased if “we test our method on the training set”
— The more parameters, the easier to make overtuning
— Removing “instances that are easy for our competitor” is not fair

— When comparing methods A and B, the instance classification must
be the same if A and B swap - blind wrt the “name” of the method

19

Part Il: Exploiting erraticism

A simple bet-and-run scheme

— Make KTOT independent short runs with randomized initial
conditions, and abort them after MAX_NODES nodes

— Take statistics at the end of each short run (total depth and n. of
open nodes, best bound, remaining gap, etc.)

— Based on the above statistics, choose the most promising run
(say the k-th one)

— “Beton” run k, i.e., restore exactly the initial conditions of the k-th
run and reapply the solver from scratch (without node limit)

21

Discussion

Similar approaches already used for solving very hard problems
(notably, QAPs etc.), by trying different parameter configurations and
estimating the final tree size in a clever way

The underlying “philosophy” is that a BEST parameter configuration
exists somewhere and could be found if we were clever enough

Instead, we do not pretend to find a best-possible tuning of solver’s
param.s (whatever this means)

... our order of business here is to play with randomness only

We apply a very quick-and-dirty selection criterion for the run to bet on

... as we know that no criterion can be perfect > what we are looking for
IS Just a positive correlation with the a-posteriori best run

22

Some experiments

IBM ILOG Cplex 12.2 (single thread, default without dynamic search)
Time limit: 10,000 CPU sec.s on a PC i5-750@2.67GHz

Large testbed with 492 instances taken from:

e The COR@L library [2]. We considered all the 372 instances in the
library, and removed two instances, namely neos-1417043 which is
just an LP model, and neos-578379 which cannot be downloaded in
a correct format, plus three instances (neos-1346382, neos-933364

and neos-641591) that were duplicated in the library; thus we got
367 problems.

e The recent MIPLIB 2010 library of instances [11]. We considered all
the 166 in the library that belong to classes benchmark and tree, plus
all the instances that were marked as hard.

23

Outcome (5 short runs, 5 nodes each)

Best time range Algorithm |# opt.| Time %incr|# Nodes %iner| 1., Yoincr
Cplex 12.2 52 0.2 0.0 5 0.0

]0-1] het-and-run 52 0.3 398 5 3.1 0.2 -4.0
hest 52 0.2 -4.7 5 -6.6
Cplex 12.2 76 3.8 0.0 48 0.0

]1-10] het-and-run 76 53 396 39 -17.7 3.2 -15.7
hest 76 3.2 -17.0 32 -326
Cplex 12.2 82 40.2 0.0 983 0.0

]10-100] het-and-run 83 514 280 782 -204 329 -185.0
hest 83 315 -21.5 620 -30.8
Cplex 12.2 60 402.1 0.0 7,105 0.0

]100-1,000] het-and-run 601 515.1 28.1 6,760 -4.8| 3548 -11.8
hest 61 3106 -22.8 5,225 -26.5
Cplex 12.2 4315,214.4 0.0 210,764 0.0

]1,000-10,000] bet-and-run 4614,473.4 -14.2| 179,427 -14.94,167.0 -20.1
hest 5013,198.3 -38.7| 134,354 -36.3

Table 2: Results on all the 492 instances in our testbed (geometric means)

Validation

The previous table shows a 15% speedup for hard cases in class]1,000-10,000]

Validation on 10 copies of each hard instance (random rowsé&col.s scrambling)

Best time range Algorithm |# opt.| Time %incr|# Nodes %incr| Ti..e Yincr
Cplex 12.2 6 31.7 0.0 20,126 0.0

|10-100] bet-and-run 50 111.2 250.6| 69,648 246.1| 106.2 234.8
best 6 31.7 0.0 20,126 0.0
Cplex 12.2 5811,001.1 0.0 10,527 0.0

|100-1,000] bet-and-run 5811,249.8 24.9 8,785 -16.6| 917.8 -8.3
best 62| 5H53.7T -44.7 5,247 -50.2
Cplex 12.2 299 1 4,928.5 0.0 427,650 0.0

|1,000-10,000] bet-and-run 31214,301.6 -12.7] 348,238 -18.6(4,100.6 -16.8
best 3301(3.278.4 -33.5| 285,220 -33.3
Cplex 12.2 363 (6,298.5 0.0 413,615 0.0

< 10,000 bet-and-run 37515,996.2 -4.8| 355,430 -14.1|5,572.1 -11.5
best 398 14,408.6 -30.0| 285,435 -31.0

Table 3: Results on 10 copies for 48 hard instances (geometric mean)

Variability reduction by root sampling

Ongoing joint work with Andrea Lodi and Andrea Tramontani
[Preprocessing J
// w
P '4 T~
t

Root Roo Root
Node # | Node #2 1 Node #K

26

Preliminary results

100 instances from MIPLIB2010 (benchmark+primal) with high variability

Variability score (the larger the more variability); ticks=deterministic CPU time

Variability scores

cpX 0.48 0.80

easy
ksample 0.15 029
cpX 043 047

hard
ksample 041 0.44
cpXx 0.45 0.6l

all

ksample 0.30 0.38
27

Performance

cpX 19,407 1425

easy
ksample 3,351 7.86
cpXx 21494 23,707.06

hard
ksample 205,367 21,3377
| cpXx 78,508 | 15585

d

ksample 39,251 78781

Conclusions

High-sensitivity to initial conditions is well accepted (and exploited) by the
heuristic community, but is still viewed as a drawback within an exact
search method

However, one can argue that exact tree search methods are just heuristics
designed (and tuned) to eventually prove optimality

We have outlined possible approaches to actually turn erraticism to one's
advantage within an exact tree-search method (better performance and/or
less variability)

FUTURE RESEARCH

— More clever selection of the run to bet on? Better classification
methods (support vector machine & alike)?

— Better ways to exploit sampled root-node information?

— Borrow ideas from metaheuristic community (multi-start, GRASP, etc.)
29

