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1 Introduction

During the last 30 years, the field of sports scheduling has attracted an increas-

ing interest due to very hard problems with obvious practical applications. The

area has provided unsolved theoretical problems concerning the characterization

of feasible structures, as well as challenging benchmark problems still unsolved

by state of the art algorithms, like the Traveling Tournament Problem of Eas-

ton, Nemhauser and Trick [5]. In addition, the combination of optimization and

feasibility issues seen in sports scheduling problems is well suited for the grow-
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ing interest of combining integer programming (IP) and constraint programming

(CP).

In the 1980s, de Werra [2,3,4] and Schreuder [22] obtained a number of theo-

retical results for round robin tournaments. Among these results were a construc-

tive method for generating a round robin tournament with a minimal number

of breaks called the canonical schedule. This method can be used directly when

no additional constraints are present. However, real sports league schedules are

often constrained by special requests from the teams and these requests exclude

the use of the canonical schedule. Nemhauser and Trick [18] outline examples of

such constraints for the Atlantic Coast Conference.

Our work examines computational approaches to the constrained minimum

break problem. This problem has been studied in several papers and both practi-

cal applications [1,8,18,23] as well as general solution methods [6,7,9,15,20,21,24,25]

have been examined. A three phase approach has proven to be very efficient and

has been widely used in the literature, though the order of the following three

phases varies. Phase one generates home away patterns (patterns) and pattern

sets. Phase two finds timetables which are assignments of games to time slots

and phase three allocates teams to patterns.

The hybrid IP/CP approach presented in this paper also adopts the three

phase approach but it contains two essential differences compared to the previous

approaches. It obtains speedups by limiting the number of patterns generated

initially and it reduces the number of infeasible pattern sets found in phase one

by using Benders cuts.

The approach is inspired by the work of Hooker and Ottosson [10] in which

the concept of logic based Benders decomposition is developed. This generaliza-

tion makes it possible to apply the Benders decomposition strategy on problems

without a linear programming subproblem. In particular, the method can be

used when merging IP and CP since it allows a CP subproblem as in [11] and

[13] in which a machine scheduling application is considered.



3

Our approach for the constrained minimum break problem treats phase one as

a master problem while phase two and three are subproblems. The master prob-

lem finds a pattern set with a minimal number of breaks and the subproblems

check feasibility of the pattern set. If the subproblems are feasible, a schedule

has been found; otherwise a Benders cut is added to the master problem to cut

off infeasible solutions in future iterations. The approach will be referred to as

the pattern generating Benders approach (PGBA).

Computational tests show that the PGBA leads to substantial savings in

computation time for most instances when compared to the three phase ap-

proach. The savings are small for small instances but increase with the number

of teams and for very difficult instances. These speedups make it possible to

consider non-mirrored tournaments of realistic size.

We extend this work to a version of the Traveling Tournament Problem. In

Urrutia and Ribeiro [27], it is shown that for the Constant Distance Traveling

Tournament Problem (CTTP), the problem of minimizing the total travel dis-

tance is equivalent to maximizing the number of breaks. With some modifications

of the algorithm presented here, it is possible to solve a number of previously

unsolved benchmark problems for CTTP to optimality.

The rest of the paper is organized as follows. The problem formulation is

stated in Section 2 and the solution method is outlined in Section 3. Sections

4 and 5 present the models used to generate patterns and find pattern sets

respectively. Section 6 introduces models for checking feasibility and presents

Benders cuts while Section 6.4 shows how timetables and team allocations are

found. The algorithm is formally stated in Section 7, computational results are

shown in Section 8 and concluding remarks are given in Section 9.

2 Problem formulation

Before stating the problem some basic terminology is needed. We consider double

round robin tournaments which are tournaments where all teams meet twice.

Each team has a venue and it plays all other teams once at the home venue
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and once at the venue of the opponent. The tournament is partitioned into time

slots and each team cannot play more than one game in each slot. Since only

tournaments with an even number of teams are considered we require that each

team plays in each slot.

Each team has a home-away pattern (pattern) which is an array of zeros

and ones with an entrance for each slot. An entrance with a 0 (1) means that

the team plays away (home) in the corresponding slot. A set of patterns for

all the teams in a tournament is called a home-away pattern set (pattern set)

and it is feasible when a corresponding timetable exists. A timetable is a matrix

with a row for each team and a column for each slot where entrance (i, s) gives

the opponent of team i in slot s. Figure 2.1 shows a feasible pattern set for a

tournament with 6 teams and a corresponding timetable.

Slot 1 2 3 4 5 6 7 8 9 10
p1 0 1 0 1 0 1 0 1 0 1
p2 0 1 1 0 1 1 0 0 1 0
p3 1 0 1 1 0 0 1 0 0 1
p4 0 1 0 0 1 1 0 1 1 0
p5 1 0 1 0 1 0 1 0 1 0
p6 1 0 0 1 0 0 1 1 0 1

Slot 1 2 3 4 5 6 7 8 9 10
team 1 6 3 5 2 4 6 3 5 2 4
team 2 5 6 4 1 3 5 6 4 1 3
team 3 4 1 6 5 2 4 1 6 5 2
team 4 3 5 2 6 1 3 5 2 6 1
team 5 2 4 1 3 6 2 4 1 3 6
team 6 1 2 3 4 5 1 2 3 4 5

(a) (b)

Fig. 2.1. (a) Home away pattern set, (b) Corresponding timetable

In sports leagues where teams return home after each game, alternating pat-

terns of home and away games are normally preferred. Patterns which does not

alternate but have two consecutive home games or two consecutive away games

are said to have a break in the last of the two slots. The breaks in the pattern

set of Figure 2.1 is underlined. In order to create a good schedule the number of

breaks is minimized and since patterns with consecutive breaks are considered

highly undesirable such patterns are discarded. Notice that a feasible pattern

set cannot contain more than two patterns without breaks.
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Apart from providing good patterns to the teams, the schedule must also

comply with whatever needs the teams may have for playing home or away at

certain dates. We will define a place constraint to be a requirement saying that

a team must play home or must play away in a given time slot. These place

constraints typically arise from venue limitations and they are generally not

satisfied by the canonical schedule.

When feasible, a mirrored tournament is often a good choice since games

between opponents are well separated. A tournament is mirrored when each game

played in the first half is repeated in the corresponding time slot of the second

half with venues reversed, see Figure 2.1. However, when mirrored tournaments

are used, some flexibility is lost and it might not be possible to satisfy the place

constraints. Instead a non-mirrored tournament can be used but then an extra

constraint is needed to separate games with the same opponents.

The problem addressed in this paper is to find a schedule which accommo-

dates the above requirements. More specifically, it is to find a double round

robin tournament for 2n teams such that the games are partitioned in 4n − 2

time slots and each team plays one game in each slot. All place constraints must

be satisfied, consecutive breaks are not allowed and the total number of breaks

must be minimized. Both the mirrored and the non-mirrored cases will be con-

sidered and, in the non-mirrored case, two games with the same opponents must

be separated by at least k time slots for some given value of k.

The sets of teams and time slots are denoted T and S respectively and I1
i

and I0
i hold the slots in which team i must play home and away due to place

constraints. We introduce the following variables:

his =





1 if team i plays home in slot s

0 else

bis =





1 if team i has a break in slot s: his−1 = his

0 else

xij ∈ S gives the slot in which team j visits team i.
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The problem can be formally stated as a CP problem:

(CPP)

min
∑

i∈T

∑

s∈S

bis (2.1)

s.t. sequence(1, 2, 3, all(s ∈ S) his,

1, 2n− 1) i ∈ T (2.2)

(bis = 1) ⇔ (his−1 = his) i ∈ T, s ∈ S \ {1} (2.3)

bi1 = 0 i ∈ T (2.4)
∑

i∈T

his = n s ∈ S (2.5)

his = 1 i ∈ T, s ∈ I1
i (2.6)

his = 0 i ∈ T, s ∈ I0
i (2.7)

(his = 0) ∨ (hjs = 1) ⇒ (xij 6= s) i, j ∈ T, i 6= j (2.8)

alldifferent(all(j ∈ T \ i) xij ,

all(j ∈ T \ i) xji) i ∈ T (2.9)

(xij − xji < −k) ∨ (xij − xji > k) i, j ∈ T, i < j (2.10)

his, bis ∈ B i ∈ T, s ∈ S (2.11)

xij ∈ S i, j ∈ T, i 6= j (2.12)

Constraint (2.2) is a global constraint which takes six arguments, three inte-

gers: nbMin, nbMax and width, and three one dimensional arrays: vars, values

and card.

sequence(nbMin, nbMax, width, vars, values, card)

values and card must have the same index set I and in the given application

the two arrays are of size 1. vars is an array of variables and the constraint

requires that for all i ∈ I the number of variables in vars, which is equal to

values[i], must be card[i]. Furthermore, any subsequence of size width must

contain at least nbMin and at most nbMax values from values [12]. The constraint

requires that each team plays exactly 2n − 1 home games and has a pattern
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without consecutive breaks since three consecutive slots must contain at least

one and at most 2 home games. Constraint (2.3) defines a break and since breaks

are impossible in the first slot, (2.4) sets all break variables for slot 1 to zero.

Constraint (2.5) states that in each time slot, exactly n teams play home and

(2.6) and (2.7) make sure that the place requirements are satisfied. Constraint

(2.8) makes sure that team j does not visit team i in a slot where team i plays

away or team j plays home. The alldifferent constraint (2.9) takes an array of

variables vars with index set I as argument and it requires that all variables

in vars must be different [12]. Since vars is the array of all games played by a

specific team the constraint makes sure that a team does not play more than a

single game in each time slot. Finally (2.10) separates two games played by the

same teams with at least k time slots.

Notice, that the constraints (2.2)-(2.4) are all constraints for individual pat-

terns, (2.5) is a constraint for the set of patterns and (2.8)-(2.10) consider assign-

ments of games to the pattern set. This partitioning will be used in the solution

method.

3 Methodology

To solve the problem defined in Section 2, we present a pattern generating Ben-

ders approach. The approach decomposes the problem into the following four

components: generate feasible patterns, find pattern sets from the patterns gen-

erated, check feasibility of the pattern sets, and find a timetable with a feasible

team allocation. However, instead of solving these components one by one, the

algorithm iterates between the four components.

Contrary to previous approaches, the PGBA only generates patterns with a

small number of breaks at first. Then, from among these patterns, a minimiza-

tion problem (the master problem) finds a pattern set with a minimal number

of breaks. This pattern set is a good candidate for an optimal solution if a

corresponding timetable and team allocation exist. The check for optimality is

discussed in Section 7.
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Furthermore, the PGBA introduces the third component for checking feasi-

bility of the pattern sets. The component heuristically determines infeasibility

and, when successful, adds Benders cuts to the master problem. A number of

models are used to perform this check and they are presented in Section 6.

The fourth component is used to find a timetable and a team allocation for

pattern sets which have not been proved infeasible. If the pattern set turns out to

be infeasible anyway, a Benders cut is added to the master problem. Otherwise,

a feasible solution is found and optimality must be proved.

In case the master problem is infeasible the algorithm tries to generate ad-

ditional patterns. If extra patterns exist the algorithm continues. Otherwise an

optimal solution has been found or infeasibility of the problem has been proved

and the algorithm stops. The chart in Figure 3.1 gives an overview of how the

algorithm works.

Generate
patterns

Find a
pattern set

Check
feasibility

Assign games &
allocate teams

Stop Stop

Add cut

Patterns found Set found Set not proven
infeasible

Set not found
Set infeasible

Set feasible but not proven optimal

Patterns
not found

Set feasible
and optimal

Fig. 3.1. Overview of the algorithm.

The algorithm is applicable for both mirrored and non-mirrored schedules but

some of the models are modified according to the given problem. Both IP and

CP models are used in the algorithm since the decomposition makes it possible

to use IP for the optimization problems and CP for feasibility problems. The
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models are outlined in the following three sections and a discussion of each of

the four components from Figure 3.1 is given in Section 7.

4 Generating patterns

A CP model is used for generating patterns. The model generates all patterns

which begin with an away game, satisfy the constraint (2.2) and have exactly c

breaks, where c is a parameter given to the model. Notice that, for each pattern

found by the model, the complementary pattern, where home and away games

are reversed, is available as well.

By using the variables hs for all s ∈ S, where hs is one (zero) if the pattern

has a home (away) game in slot s, the CP model looks as follows:

(PM)

sequence(1, 2, 3, all(s ∈ S) hs, 1, 2n− 1) (4.1)

h1 = 0 (4.2)

|S|−1∑
s=1

(hs = hs+1) = c (4.3)

hs + hs+2n−1 = 1 s = 1, . . . , 2n− 1 (4.4)

hs ∈ B s ∈ S (4.5)

Constraint (4.1) corresponds to (2.2) from (CPP) presented in Section 2.

(4.2) restricts the search to patterns which begin with an away game and (4.3)

limits the search to patterns with c breaks. (4.4) requires that the pattern is

mirrored and is only used when a mirrored tournament is considered.

5 Pattern sets

Given a set of patterns found by (PM) we want to find a subset of 2n patterns

with a minimal number of breaks. Since all the patterns satisfy the constraint

(2.2), and the game assignment and team allocation are postponed, the only

constraint from (CPP) which should be considered is (2.5). However, restricting

the model to find pattern sets for which all teams can be allocated to at least
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one pattern based on place constraints helps to avoid obviously infeasible sets.

Finally a lower and an upper bound (LB & UB) on the number of breaks are

added. The lower bound is used to reduce computation time while the upper

bound is used to prove optimality when a feasible schedule has been found. The

adjustments of these bounds will be described in Section 7.

The set of generated patterns is denoted P and a binary variable p for all j

in P is used to determine whether pattern j is included in the subset (pj = 1)

or not (pj = 0). cj denotes the number of breaks for pattern j and hjs is a

parameter telling whether pattern j plays home (hjs = 1) or away (hjs = 0) in

slot s. The set Pi = {j ∈ P |hjs = 1 ∀s ∈ I1
i ∧ hjs = 0 ∀s ∈ I0

i } is used to store

the patterns which satisfy all place constraints of team i.

Since the problem of finding pattern sets is a minimization problem, the

following IP model is used.

(PSM)

min
∑

j∈P

cjpj (5.1)

s.t.
∑

j∈P

pj = 2n (5.2)

∑

j∈P

hjspj = n s ∈ S (5.3)

∑

j∈Pi

pj ≥ 1 i ∈ T (5.4)

∑

j∈P

cjpj ≥ LB (5.5)

∑

j∈P

cjpj ≤ UB (5.6)

pj ∈ B j ∈ P (5.7)

Constraint (5.2) makes sure that exactly 2n patterns are chosen, (5.3) cor-

responds to (2.5), (5.4) requires that all teams can be allocated to at least one

pattern and (5.5) and (5.6) enforce a lower and an upper bound on the number

of breaks.
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6 Feasibility check and Benders cuts

A pattern set found by (PSM) is feasible if all games can be assigned to slots and

teams can be allocated to patterns. If this is not the case, a Benders cut is added

to (PSM) to cut off the current and similar solutions. However, the Benders cuts

used in this method are not obtained from a linear subproblem as in traditional

Benders decomposition. Instead a logic based Benders decomposition is used, as

defined by Hooker and Ottosson [10], where the Benders cuts are obtained from

inference duals. When the subproblem is a feasibility problem, the inference

dual is a condition which, when satisfied, implies that the master problem is

infeasible. This condition can then be used to obtain a Benders cut for cutting

off infeasible solutions.

In this section we give a necessary and sufficient condition for a team alloca-

tion to exist and necessary conditions for a game assignment to exist. Further-

more, we present a Benders cut for each of the conditions. The pattern set which

is currently checked is denoted PC .

6.1 Team allocation

Let G = (A,B) be a bipartite graph where the node sets A and B correspond

to the set of teams and the set of patterns respectively. Furthermore, connect

node i ∈ A and node j ∈ B by an edge if j ∈ Pi ∩ PC . The allocation of teams

to patterns corresponds to a matching between the two node sets A and B from

G. Figure 6.1 give an example of such a bipartite graph.

1

2

3

4

1

2

3

4

T PCPatterns
1 2 3 4

P1: 1 2
P2: 1
P3: 1 3 4
P4: 2

Fig. 6.1. Example of bipartite graph used to find a team allocation.
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This means that Hall’s theorem [14] gives a necessary and sufficient condition

for a team allocation to exist.

Hall’s theorem Let G = (A,B) be a bipartite graph. Then G has a matching

of A into B if and only if |Γ (X)| ≥ |X| for all X ⊆ A.

In our case Γ (X) = ∪i∈X(Pi ∩ PC). We can use the Hungarian method to

find a set of teams X which violates the condition from Hall’s theorem if any

such set exists. Otherwise the Hungarian method finds a feasible team allocation.

If a violating set of teams X is found the following Benders cut can be used.

∑

j∈∪i∈XPi

pj ≥ |X| (6.1)

6.2 Diversity of Patterns

In case a subset of patterns from the current pattern set PC is very similar it

might be difficult or even impossible to schedule the mutual games between these

patterns. Miyashiro et. al. [17] give the following necessary condition which must

be satisfied by all subsets P̄ for a pattern set to be feasible.

∑

s∈S


min





∑

j∈P̄

hjs,
∑

j∈P̄

(1− hjs)






 ≥ |P̄ |(|P̄ | − 1) (6.2)

The parameter hjs tells whether pattern j plays home or away in slot s.

The condition requires that the sum of the maximum number of mutual

games, which can be played by patterns from P̄ in each slot, must be no less

than the required number of mutual games. For each slot the minimum of the

number of home games and the number of away games played by patterns from

P̄ is used as an upper bound on the number of mutual games. Notice that the

condition is always satisfied for subsets of size two since all patterns are distinct.

Instead of checking each subset, we formulate an IP model which, for a given

subset size Z, finds the subset of teams with the smallest left hand side in 6.2.

To formulate this problem a variable αj for each j in PC is used to determine

whether pattern j is in the subset (αj = 1) or not (αj = 0). A variable δs for
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each s in S is set to one (zero) if the home (away) games are counted in slot s

and a variable βs for each s in S counts the number of home (away) games from

slot s.

(UBM)

min
∑

s∈S

βs (6.3)

s.t.
∑

j∈P C

αj = Z (6.4)

βs −
∑

j∈P C

hjsαj + Z(1− δs) ≥ 0 s ∈ S (6.5)

βs −
∑

j∈P C

(1− hjs)αj + Zδs ≥ 0 s ∈ S (6.6)

αj , δs ∈ B j ∈ PC , s ∈ S (6.7)

βs ∈ R+ s ∈ S (6.8)

In this problem (6.4) ensures that exactly Z patterns are chosen and (6.5)

and (6.6) make sure that the number of home games are counted in slot s if

δs = 1 and away games are counted if δs = 0.

This problem can be used to formulate a necessary condition for PC to be

feasible since (6.2) is satisfied for all subsets of size Z if and only if the optimal

solution of (UBM) is no less than Z(Z − 1).

The pattern diversity condition: Given a pattern set PC and a subset size

Z then the pattern set is feasible only if the optimal solution of (UBM) is no less

than Z(Z − 1).

If this condition is not satisfied the Benders cut

∑
j∈P :
αj=1

pj ≤ Z − 1 (6.9)

can be added to (PSM).

When the tournament is mirrored, (UBM) can be modified to only consider

the first half of the slots. In that case (6.9) can be added to (PSM) if the objective

of (UBM) is strictly less than Z(Z−1)
2 .
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6.3 Game Separation

When a non-mirrored tournament with k > 0 is considered two additional nec-

essary conditions can be stated. One for subsets of patterns with cardinality two

and one for subsets with cardinality greater than two.

Subsets of two patterns. Since k > 0 the pattern set might contain two

patterns without possibility for playing the two required games. See Figure 6.2

for an example when k ≥ 2.

sf
12 sf

21 sl
21 sl

12

1 1 1 0 0 1 0 1 0 1 0

2 1 0 1 1 0 0 1 0 1 0

Slot 1 2 3 4 5 6 7 8 9 10

Fig. 6.2. Example of two patterns which cannot meet when k ≥ 2.

By letting the parameters sf
ij and sl

ij denote the first respectively last slot in

which j can visit i the following lemma can be established.

Lemma 1. The two games between patterns i and j can be assigned to two slots

in S separated by k slots if and only if

(sl
ij − sf

ji > k) ∨ (sl
ji − sf

ij > k). (6.10)

In Figure 6.2 we see that sf
12 = 2, sf

21 = 3, sl
12 = 5 and sl

21 = 4. This means that

(6.10) is violated when k ≥ 2.

Lemma 1 implies the necessary condition.

The pair separation condition: Given a pattern set PC and two patterns i,

j from this set, then the pattern set is feasible only if i, j satisfy 6.10.

All pairs i, j violating this condition lead to the Benders cut:

pi + pj ≤ 1 (6.11)
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Subsets of more than two patterns. Let P̄ be a subset of PC containing

more than two patterns. To check if this subset can play the required number of

mutual games, a CP model is used. The constraints are similar to the constraints

(2.8) - (2.10) but they only consider the patterns from P̄ . This gives the following

CP model.

(GAM)

(his = 0) ∨ (hjs = 1) ⇒ (xij 6= s) i, j ∈ P̄ , i 6= j, s ∈ S (6.12)

alldifferent(all(j ∈ P̄ \ i) xij ,

all(j ∈ P̄ \ i) xji) i ∈ P̄ (6.13)

(xij − xji < −k) ∨ (xij − xji > k) i, j ∈ P̄ , i < j (6.14)

xij ∈ S i, j ∈ P̄ , i 6= j (6.15)

The fact that the mutual games between patterns in P̄ can be assigned to

time slots if and only if (GAM) is feasible leads to the second condition.

The multiple pattern separation condition: Given a pattern set PC and

a subset of patterns P̄ from this set, then the pattern set is feasible only if P̄ is

a feasible solution to (GAM).

For all subsets P̄ which are infeasible to (GAM) the following Benders cut

can be added to (PSM)

∑

j∈P̄

pj ≤ |P̄ | − 1 (6.16)

Since the number of subsets is exponential the algorithm only checks subsets

with cardinality less than a bound maxCardGAM .

6.4 Game Assignment

When the pattern set PC satisfies all the necessary conditions outlined above, a

team allocation has already been found by the Hungarian method but a feasible

game assignment is not guaranteed.

To find a game assignment if any exists, the CP model GAM from Section 6.3

is used. If a non-mirrored tournament with k > 0 is considered the model can be



16

used as it is on the entire pattern set PC . Otherwise, the separation constraint

(6.14) is redundant and can be removed.

In case (GAM) is feasible a feasible game assignment is found and otherwise

the Benders cut (6.16) is added to (PSM).

7 The algorithm

This section presents pseudo code for each of the four components illustrated in

Figure 3.1 and discusses how the components work.

Initialization. Before the first patterns are generated a number of parameters

must be initialized. The parameter c used in (PM) is initialized to zero, LB and

UB used in (PSM) are initialized to 2n − 2 and 2n(2n − 2) respectively and

the parameters nbPatterns and cutAdded are initialized to zero. Furthermore,

the parameters maxCardGAM and maxCardUBM are used to limit the size of

the subsets for which (GAM) and (UBM) are used. These parameters must be

initialized to numbers between three and 2n.

Generating patterns. The procedure Generate Patterns is shown in Figure

7.1. Since the maximum number of breaks for a single pattern is 2n − 1 the

algorithm stops if c > 2n−1 when the procedure is called. Otherwise it generates

all patterns with exactly c breaks, increments c by one and calls the procedure

Find Pattern Set. However, if the number of patterns is less than the number of

teams, the procedure repeats itself.

Finding pattern sets. Figure 7.2 outlines the procedure Find Pattern Set

which solves (PSM). In case of a feasible solution, the lower bound is set equal

to the objective value and the procedure Check Feasibility is called. Otherwise,

Generate Patterns is called to generate additional patterns.
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1 procedure Generate Patterns

2 if (c > 2n− 1) then

3 Stop

4 else

5 Find all solutions to (PM)

6 Update nbPatterns

7 Let c = c + 1

8 if (nbPatterns < 2n) then

9 Generate Patterns

10 else

11 Find Pattern Set

12 end procedure

Fig. 7.1. Procedure for generating patterns.

1 procedure Find Pattern Set

2 Solve (PSM)

3 if ((PSM) is feasible) then

4 Update P C

5 Update LB

6 Check Feasibility

7 else

8 Generate Patterns

9 end procedure

Fig. 7.2. Procedure for finding pattern sets.

Feasibility. The procedure Check Feasibility, is used to check if any of the

necessary conditions from Section 6 is violated. Computational tests have shown

that the algorithm performs best when the pattern diversity condition is omitted

in case of non-mirrored tournaments and the pair separation condition and the
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1 procedure Check Feasibility

2 cutAdded = 0, card = 2

3 Use the Hungarian method

4 if (∃X ⊆ T : Γ (X) < X) then

5 Add (6.1) to (PSM), cutAdded = 1

6 if (cutAdded = 0) then

7 for all (i, j ∈ P C : i < j) do

8 if ((6.10) is violated) then

9 Add (6.11) to (PSM), cutAdded = 1

10 while ((card < maxCardGAM ) ∧ (cutAdded = 0)) do

11 card = card + 1

12 for all (P̄ ⊆ P C : |P̄ | = card) do

13 if (cutAdded = 0) then

14 Solve (GAM) for P̄

15 if ((GAM) is infeasible) then

16 Add (6.16) to (PSM), cutAdded = 1

17 if (cutAdded = 0) then

18 Find Timetable

19 else

20 Find Pattern Set

21 end procedure

Fig. 7.3. Procedure for checking feasibility.

multiple pattern separation condition is omitted in case of mirrored tournaments.

Figure 7.3 displays the procedure for the non-mirrored case.

The procedure starts by using the Hungarian method to find a team allo-

cation. In case no allocation exists the method finds a subset of teams which

violates the necessary and sufficient condition stated in Hall’s theorem and the

cut (6.1) is added to (PSM). If a team allocation is found the algorithm adds

the cut (6.11) to (PSM) for all pairs of patterns which violate (6.10). In case
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all pairs satisfy (6.10) it solves (GAM), starting with subsets of size three, and

continues until a subset is found for which (GAM) is infeasible, or all subsets

with cardinality less than or equal to maxCardGAM have been checked. In the

first case the cut (6.16) is added to (PSM). Finally, if no cut has been added,

Find Timetable is called and otherwise Find Pattern Set is called.

1 procedure Find Timetable

2 Solve (GAM) for P C

3 if ((GAM) is infeasible) then

4 Add (6.16) to (PSM)

5 Find Pattern Set

6 else

7 Let UB = LB − 2

8 Let LB = 2n− 3 + c

9 if (c ≤ UB − 2n + 3) then

10 for all (i ∈ {c, . . . , max{2n− 1, UB − 2n + 3}}) do

11 Generate Patterns

12 Let c = 2n

13 Find Pattern Set

14 else

15 Stop, optimal solution found

16 end procedure

Fig. 7.4. Procedure for finding a timetable.

Timetable. The procedure for finding a timetable is shown in Figure 7.4. In

this procedure (GAM) is solved for PC and in case of infeasibility (6.16) is

added to (PSM) and Find Pattern Set is called. Otherwise a timetable has been

found. This gives us a feasible solution to the problem with value LB and to

prove optimality the algorithm starts searching for a better solution. This is done
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by generating new patterns and updating the upper and lower bounds used in

(PSM). We let UB = LB−2 since we are only searching for improving solutions.

Furthermore, an improving solution must contain at least one pattern with no

less than c breaks (otherwise we would have found it all ready) which means that

we can let LB = 2n− 3+ c (at most 2 patterns without breaks, 1 with at least c

breaks and 2n−3 with 1 break). When generating extra patterns UB can be used

to limit the number of patterns which is necessary to prove optimality. Since no

pattern can have more than UB − (2n− 3) breaks in a solution with value UB

we generate all patterns with at most UB − (2n − 3) breaks. Afterwards, Find

Pattern Set is called and in case of a new feasible solution this is the optimal,

otherwise the first solution is optimal.

8 Computational results

In order to examine the performances of the PGBA, we have tested the algo-

rithm on numerous instances of mirrored and non-mirrored tournaments with

and without place constraints.

For comparison we use an algorithm denoted TPA which corresponds to the

three phase approach used by Nemhauser and Trick [18] and Henz [8]. However,

since our problem consists of finding only one schedule, TPA stops when the first

feasible schedule has been generated. This is implemented by checking feasibility

of each pattern set before the next is generated.

Computation times reported in the following tables are in seconds and all

tests have been performed on a 2.53 GHz pentium 4 processor with 512 MB

RAM. The algorithms are implemented by using a script in ILOG OPL stu-

dio [12] and CPLEX and SOLVER are called for solving IP and CP prob-

lems respectively. A time limit of 1800 seconds are enforced and ”-” is used

when this limit is violated. The instances are named using the following ab-

breviations: np/pl (no place constraints/place constraints), mi/nm (mirrored

tournament/non-mirrored), ki (k = i), pi (i is total number of place constraints),

ni (i teams).
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Table 8.1 shows the computation times for mirrored instances without place

constraints. The instance with 4 teams is infeasible since consecutive breaks are

forbidden.

Table 8.1. Mirrored instances without place constraints.

Instance Breaks TPA PGBA

np-mi-n4 * - 0.00 0.02
np-mi-n6 12 0.02 0.02
np-mi-n8 18 0.02 0.03
np-mi-n10 24 0.13 0.09
np-mi-n12 30 0.09 0.08
np-mi-n14 36 0.94 0.19
np-mi-n16 42 3.27 0.31
np-mi-n18 48 9.44 0.63
np-mi-n20 54 88.14 1.34
np-mi-n30 84 - 2.33
np-mi-n38 108 - 4.83
np-mi-n40 114 - -

* Problem is infeasible

In Table 8.2 the computation times for non-mirrored instances without place

constraints are shown. For each number of teams the problem is solved with k

equal to 0, 1, 2 and 3.

Since different place constraints affect the complexity of an instance dif-

ferently we have tested the algorithms on 10 sets of randomly generated place

constraints for each instance. The place constraints include both home and away

requirements and they may result in infeasible problems. The constraints can be

found at [19].

Tables 8.3 and 8.4 show the results for the mirrored and the non-mirrored

instances respectively. The second column tells how many of the instances that

are feasible, the third and fourth tell how many instances the two algorithms were

able to solve within the time limit and the rest of the columns give the minimum,

the maximum and the average computation time for the two algorithms. Notice,

that the average time only includes instances which were solved within the time

limit.
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Table 8.2. Non-mirrored instances without place constraints.

Instance Breaks TPA PGBA Instance Breaks TPA PGBA

np-nm-k0-n4 2 0.02 0.02 np-nm-k1-n18 18 - 5.00
np-nm-k0-n6 4 0.03 0.09 np-nm-k1-n20 20 - 14.70
np-nm-k0-n8 6 0.28 0.17 np-nm-k1-n22 ? - -
np-nm-k0-n10 8 1.45 0.36 np-nm-k2-n4 * - 0.16 0.14
np-nm-k0-n12 10 29.78 1.41 np-nm-k2-n6 10 555.11 15.14
np-nm-k0-n14 12 885.80 3.95 np-nm-k2-n8 8 19.61 0.55
np-nm-k0-n16 14 - 1.70 np-nm-k2-n10 10 91.03 0.89
np-nm-k0-n18 16 - 4.36 np-nm-k2-n12 12 - 0.92
np-nm-k0-n20 18 - 7.16 np-nm-k2-n14 14 - 2.14
np-nm-k0-n22 20 - 6.17 np-nm-k2-n16 16 - 3.48
np-nm-k0-n24 22 - 9.31 np-nm-k2-n18 18 - 4.97
np-nm-k0-n26 24 - 17.27 np-nm-k2-n20 20 - 14.75
np-nm-k0-n28 26 - 129.00 np-nm-k2-n22 ? - -
np-nm-k0-n30 ? - - np-nm-k3-n4 * - 0.16 0.13
np-nm-k1-n4 6 0.06 0.09 np-nm-k3-n6 12 - 70.02
np-nm-k1-n6 10 546.88 20.70 np-nm-k3-n8 12 - 137.00
np-nm-k1-n8 8 19.48 0.56 np-nm-k3-n10 ? - -
np-nm-k1-n10 10 90.03 0.94 np-nm-k3-n12 16 - 8.55
np-nm-k1-n12 12 - 0.91 np-nm-k3-n14 18 - 8.86
np-nm-k1-n14 14 - 1.92 np-nm-k3-n16 20 - 17.55
np-nm-k1-n16 16 - 3.99 np-nm-k3-n18 ? - -

* Problem is infeasible.

Table 8.3. Mirrored instances with place constraints.

Instance # Feasible # Solved Min. Time Max. Time Avg. Time
TPA PGBA TPA PGBA TPA PGBA TPA PGBA

pl-mi-n12-p5 10 10 10 0.17 0.11 0.67 0.33 0.31 0.19
pl-mi-n12-p10 10 10 10 0.13 0.19 1.02 0.47 0.49 0.29
pl-mi-n12-p15 9 10 10 0.03 0.20 3.36 0.73 0.65 0.32
pl-mi-n12-p20 9 10 10 0.03 0.25 0.81 0.59 0.40 0.38
pl-mi-n12-p25 7 10 10 0.03 0.23 7.58 3.44 0.86 0.69
pl-mi-n12-p30 5 9 10 0.03 0.38 31.20 1.34 3.63 0.71

pl-mi-n16-p5 10 10 10 2.49 0.11 21.24 0.69 6.83 0.37
pl-mi-n16-p10 10 10 10 1.11 0.14 13.16 28.47 6.46 3.17
pl-mi-n16-p15 9 10 10 0.42 0.11 1306.03 14.48 137.51 2.15
pl-mi-n16-p20 9 10 10 0.72 0.11 233.03 204.38 33.72 24.96
pl-mi-n16-p25 9 8 10 0.72 0.20 57.86 29.20 12.98 6.52
pl-mi-n16-p30 9 9 10 0.42 0.11 1793.05 21.24 215.67 8.11

The computational tests for both the mirrored and non-mirrored instances,

with and without place constraints show that PGBA is superior to TPA and it

is able to solve problems in few seconds which cannot be solved by TPA in half
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Table 8.4. Non-mirrored instances with place constraints.

Instance # Feasible # Solved Min. Time Max. Time Avg. Time
TPA PGBA TPA PGBA TPA PGBA TPA PGBA

pl-nm-k0-n8-p5 10 10 10 0.08 0.08 0.33 0.27 0.14 0.20
pl-nm-k0-n8-p10 10 10 10 0.08 0.06 0.25 0.61 0.15 0.21
pl-nm-k0-n8-p15 8 10 10 0.06 0.08 398.58 1.64 40.75 0.50
pl-nm-k0-n8-p20 5 8 10 0.08 0.28 38.27 1.91 5.34 0.83
pl-nm-k0-n8-p25 7 7 10 0.06 0.25 195.64 4.38 32.39 1.38
pl-nm-k0-n8-p30 3 10 10 0.06 0.63 76.58 0.99 8.65 0.77

pl-nm-k1-n8-p5 10 10 10 2.95 0.17 8.78 0.47 7.01 0.28
pl-nm-k1-n8-p10 10 10 10 1.11 0.17 258.76 0.94 33.17 0.50
pl-nm-k1-n8-p15 8 9 10 0.06 0.16 531.89 3.08 66.85 0.93
pl-nm-k1-n8-p20 5 8 10 0.06 0.38 424.81 5.66 69.83 1.75
pl-nm-k1-n8-p25 7 5 10 0.06 0.64 79.48 8.19 16.19 2.68
pl-nm-k1-n8-p30 3 10 10 0.06 0.61 619.63 4.00 69.75 1.16

pl-nm-k2-n8-p5 10 10 10 2.98 0.17 8.80 0.50 7.03 0.29
pl-nm-k2-n8-p10 10 10 10 1.09 0.17 258.64 0.67 33.14 0.46
pl-nm-k2-n8-p15 8 9 10 0.06 0.16 529.65 2.59 66.59 0.86
pl-nm-k2-n8-p20 5 8 10 0.06 0.38 429.67 5.75 70.40 2.06
pl-nm-k2-n8-p25 7 5 10 0.06 0.69 79.34 5.67 16.16 2.19
pl-nm-k2-n8-p30 3 10 10 0.06 0.61 619.58 3.06 69.79 1.07

an hour. In the easy instances the time is almost the same, but PGBA performs

significantly better than TPA when hard instances are considered. PGBA also

proves to be extremely stabile when random place constraints are considered.

In Table 8.4 the maximum time used by PGBA is 8.19 seconds while TPA is

unable to solve several of the instances in less than half an hour.

8.1 The constant distance Traveling Tournament Problem

The Traveling Tournament Problem (TTP) was stated by Easton, Nemhauser

and Trick [5] and originates from the scheduling of Major League Baseball in the

United States. The problem is to minimize the total travel distance of all teams

while the basic constraints of a tournament must be satisfied.

Input: The number of teams in the tournament n, an n × n distance matrix

D, where Dij is the distance between the venues of team i and team j, and two

integer parameters L and U .
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Output: A double round robin tournament for the n teams satisfying that the

number of consecutive home games and the number of consecutive away games

are between L and U and the total distance traveled by the teams is minimized.

A number of Benchmark problems can be seen at [26]. In all of these problems

L = 1, U = 3 and the problem is either mirrored or a non-repeater constraint is

added.

Urrutia and Ribeiro [27] denote the special version of the TTP where all

distances are equal to 1 the Constant Distance Traveling Tournament Problem

(CTTP) and they show that maximizing the number of breaks is equivalent

to solving the CTTP. Miyashiro and Matsui [16] have shown that maximizing

breaks is equivalent to minimizing breaks and the result means that the CTTP

can be solved by minimizing breaks. However, we have used the PGBA to solve

the CTTP by changing (PSM) to maximizing the number of breaks instead of

minimizing it and allowing up to three consecutive home and away games. This

means that the PGBA finds feasible pattern sets for the TTP with a maximal

number of breaks and as shown in the following two tables it is able to solve

benchmark problems previously unsolved. The Benchmark problems plus bounds

can be seen at [26].

Table 8.5 shows the results for the mirrored CTTP. The first column gives

the number of teams, columns two and three give the upper and lower bounds

reported by Urrutia and Ribeiro [27] while column four gives the distances ob-

tained by PGBA. Columns five and six give the number of breaks and the so-

lution time used by PGBA respectively. Notice, that since PGBA is an exact

solution method it provides both lower and upper bounds.

In Table 8.6 the corresponding columns are presented for the non-mirrored

CTTP. No lower bounds have been obtained prior to this work and the upper

bounds are reported by Schaerf and Di Gaspero [26].
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Table 8.5. Solution values to Mirrored CTTP.

Teams Distance Breaks Time
UB LB PGBA

4 17 17 17 14 0.02
6 48 48 48 24 0.03
8 80 80 80 64 0.13
10 130 130 130 100 0.28
12 192 192 192 144 0.23
14 256 252 253 222 35.50
16 342 342 342 276 3.02
18 434 432 432 360 2.53
20 526 520 - - -

Table 8.6. Solution values to Non-mirrored CTTP.

Teams Distance Breaks Time
UB LB PGBA

4 17 - 17 14 0.02
6 43 - 43 34 0.14
8 80 - 80 64 0.94
10 124 - 124 112 6.91
12 182 - 181 166 327.94
14 253 - 252 224 23.63
16 331 - 327 306 43.42
18 423 - - - -
20 525 - - - -

9 Conclusion

We have presented the pattern generating Benders approach which is a new

solution method for solving the place constrained break minimization problem.

The approach excels compared to previous methods by limiting the number of

patterns which are generated and using Benders cuts to avoid infeasible pattern

sets.

Extensive computational testing shows that the approach is extremely stabile

to varying place constraints which is a valuable property when real sports leagues

are considered. Furthermore, the overall runtime of the algorithm is comparable

with that of previous approaches for easy instances while savings of several orders

of magnitude are obtained for some of the hard problems considered.
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The algorithm also proves its speed by solving a number of previously un-

solved Traveling Tournament Problems. These problems are solved by modifying

the algorithm to maximizing the number of breaks instead of minimizing it.

Though the algorithm in general performs well some questions remain open.

In tables 8.1 and 8.2 the computation time of PGBA increases quite slowly with

the number of teams until it suddenly exceeds 30 minutes. It is unknown what

triggers this sudden increase but it would be interesting to examine this problem

and perhaps expand the set of problems for which the algorithm can be used.

In this work we have considered place constraints but in the sports scheduling

literature several other types of constraints are discussed. These include com-

plementary constraints when two teams share the same stadium, fixed game

constraints when two teams must meet on a certain date, top team constraints

when special rules apply for the best teams and fairness constraints to distribute

the breaks evenly. A direction for future research would be to analyse how these

constraints can be implemented in the algorithm.
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20. J.C. Régin, Minimization of the number of breaks in sports scheduling problems

using constraint programming, Constraint programming and large scale discrete

optimization, DIMACS Series in Discrete Mathematics and Theoretical Computer

Science 57 (2001)115-130.

21. A. Schaerf, Scheduling Sport Tournaments using Constraint Logic Programming,

Constraints 4 (1999)43-65.



28

22. J.A.M. Schreuder, Constructing Timetables for Sport Competitions, Mathemati-

cal Programming Study 13 (1980)58-67.

23. J.A.M. Schreuder, Combinatorial aspects of construction of competition Dutch

Professional Football Leagues, Discrete Applied Mathematics 35 (1992)301-312.

24. M.A. Trick, Integer and Constraint Programming Approaches for Round Robin

Tournament Scheduling, in: E. Burke, P. de Causmaecker (Eds.), (PATAT 2002),

Lecture Notes in Computer Science 2740, Springer, 2003, pp. 63-77.

25. M.A. Trick, A Schedule-Then-Break Approach to Sports Timetabling, in: Burke,

E.K., Erben, W. (Eds.), (Practice and Theory of Automated Timetabling III)

Lecture Notes in Computer Science 2079, Springer-Verlag, Berlin Heidelberg New

York, 2001, pp. 242-253.

26. M.A. Trick, Michael Trick’s Guide to Sports Scheduling,

http://mat.tepper.cmu.edu/sports/Instances/

27. S. Urrutia, C.C. Ribeiro, Maximizing Breaks and Bounding Solutions to the

Mirrored Traveling Tournament Problem 2005 (Downloadable from website

http://www.inf.puc-rio.br/ useba/publicacoes.htm)


