
A BRANCH-AND-PRICE APPROACH FOR
GRAPH MULTI-COLORING

Anuj Mehrotra
Department of Management Science
School of Business Administration
University of Miami
Coral Gables, FL 33124-8237
anuj@miami.edu

Michael A. Trick
Tepper School of Business
Carnegie Mellon University
Pittsburgh, PA 15213-3890
trick@cmu.edu

Abstract We present a branch-and-price framework for solving the graph multi-
coloring problem. We propose column generation to implicitly optimize
the linear programming relaxation of an independent set formulation
(where there is one variable for each independent set in the graph) for
graph multi-coloring. This approach, while requiring the solution of a
difficult subproblem, is a promising method to obtain good solutions for
small to moderate size problems quickly. Some implementation details
and initial computational experience are presented.

Keywords: Integer Programming, Coloring, column generation, multi-coloring.

1. INTRODUCTION
The graph multi-coloring problem is a generalization of the well-

known graph coloring problem. Given a graph, the (node) coloring
problem is to assign a single color to each node such that the colors
on adjacent nodes are different. For the multi-coloring problem, each
node must be assigned a preset number of colors and no two adjacent
nodes may have any colors in common. The objective is to accomplish
this using the fewest possible number of colors.

2

Like the graph coloring problem, the multi-coloring problem can model
a number of applications. It is used in scheduling ([7]) where each node
represents a job, edges represent jobs that cannot be done simultane-
ously, and the colors represent time units. Each job requires multiple
time units (the required number of colors at the node), and can be sched-
uled preemptively. The minimum number of colors then represents the
makespan of the instance. Multi-colorings also arise in telecommunica-
tion channel assignment where the nodes represent transmitters, edges
represent interference, and the transmitters send out signals on multiple
wavelengths (the colors) [14]. It is due to this application in telecom-
munications that multi-coloring, as well as generalizations that further
restrict feasible colorings, dates back to the 1960s. Aardal et al. ([1]
provide an excellent survey on these problems.

The multi-coloring problem can be reduced to graph coloring by re-
placing each node by a clique of size equal to the required number of
colors. Edges are then replaced with complete bipartite graphs between
the corresponding cliques. Such a transformation both increases the
size of the graph and embeds an unwanted symmetry into the problem.
It is therefore useful to develop specialized algorithms that attack the
multi-coloring problem directly.

Johnson, Mehrotra, and Trick [9] included the multi-coloring prob-
lem in a series of computational challenges, and provide a testbed of
sample instances. Prestwich [17] developed a local search algorithm for
this form of the multi-coloring problem and compared that approach to
a satsifiability-based model. Without lower bounds or exact solutions
to simple problems, however, it is difficult to evaluate these heuristic
approaches.

We suggest an approach based on an integer programming formula-
tion of the graph multi-coloring problem. This formulation, called the
independent set formulation, has a variable for each independent set
in the graph. In our previous work on graph coloring problems [12],
we demonstrated that despite the enormous number of variables in this
formulation, it is possible to develop an effective column generation tech-
nique for the coloring problem. We used appropriate branching rules and
tested our branch-and-price approach on a variety of coloring instances.
Encouraged by the effectiveness of such a method for coloring problems,
we discuss the extension of such an approach on graph multi-coloring
problems. This extension is independently interesting due particularly
to the non-binary nature of the variables. Most examples of branch-
and-price use binary variables, which results in now-routine branching
rules. With non-binary variables, we need to explore new and intriguing
approaches to branching.

A Branch-and-Price Approach For Graph Multi-Coloring 3

In Section 2, we develop the independent set formulation of the graph
multi-coloring problem and discuss various advantages of the formula-
tion. In Section 3, we summarize the techniques for generating columns
in this formulation and outline one method for such generation. In Sec-
tion 4, we discuss the branching rules that are necessary to be developed
for a full branch-and-price method. In Section 5, we describe some ini-
tial computational results and conclude with some directions for future
exploration.

2. A COLUMN GENERATION MODEL
Let G = (V,E) be an undirected graph on V , the set of vertices, with

E being the set of of edges. Let |V | = n and |E| = m. Let wi be an
integer weight associated with a node i ∈ V giving the required number
of colors at the node. When wi = 1, for all i ∈ V , then the problem is
the usual vertex coloring problem.

A multi-coloring of G is an assignment of wi labels to each vertex i
such that the endpoints of any edge do not have any common label. A
minimum multi-coloring of G is a multi-coloring with the fewest different
labels among all possible multi-colorings.

An independent set, S of G is a set of vertices S ⊆ V such that
there is no edge in E connecting any pair of nodes in S. Clearly in any
coloring of G, all vertices with the same label comprise an independent
set. A maximal independent set is an independent set that is not strictly
included in any other independent set.

The problem of finding a minimum multi-coloring in a graph can be
formulated in many ways. For instance, letting xik, i ∈ V , 1 ≤ k ≤ K
be a binary variable that is 1 if label k is assigned to vertex i and 0
otherwise, where K represents an upper bound on the number of labels
needed to obtain a valid multi-coloring of the graph, the problem can be
formulated as follows:

Minimize y

s.t. xik + xjk ≤ 1 ∀ (i, j) ∈ E, k = 1, ...,K∑
k

xik = wi ∀ i ∈ V

y ≥ kxik ∀ i ∈ V, k = 1, ...,K

xik ∈ {0, 1} ∀ i ∈ V, k = 1, ...,K.

4

We will refer to this formulation as (VC). While correct, (VC) is
difficult to use in practice. One obvious problem is the size of the for-
mulation. Since K can be quite large, the formulation can have up to
nK variables and 2Km + n constraints. Given the need to enforce in-
tegrality, this formulation becomes computationally intractable for all
except the smallest of instances. This is especially true because the lin-
ear programming relaxation is extremely fractional. To see this, note
that even when all wi = 1, the solution, xik = 1/K for every (i, k) is
feasible whenever K ≥ 2.

A second, less obvious, problem involves the symmetry of the formu-
lation. The variables for each k appear in exactly the same way. This
means that it is difficult to enforce integrality in one variable without
problems showing up in the other variables. This is because any solution
to the linear relaxation has an exponential number (as a function of K)
of representations. Therefore, branching to force xi1 to take on integral
values does little good because it results in another representation of the
same fractional solution in which xi2 takes on the old value of xi1 and
vice-versa.

To address this problem, we consider a formulation with far fewer
constraints that does not exhibit the same symmetry problems as our
first formulation. Let T be the set of all maximal independent sets of G.
We create a formulation with binary variables, xt, for each t ∈ T . In this
formulation, xt = k implies that independent set t will be given k unique
labels, while xt = 0 implies that the set does not require a label. The
minimum multi-coloring problem is then the following (denoted (IS)):

Minimize
∑
t∈T

xt

Subject to
∑

{t:i∈T}
xt ≥ wi ∀ i ∈ V

xt ≥ 0 and integer ∀ t ∈ T.

This formulation can also be obtained from the first formulation by
using a suitable decomposition scheme as explained in [10] in the context
of general mixed integer programs. The formulation (IS) has only one
constraint for each vertex, but can have a tremendous number of vari-
ables. Note that a feasible solution to (IS) may assign more than the
specified number of labels to a vertex since we include only maximual
independent sets in the formulation. This can be remedied by using any

A Branch-and-Price Approach For Graph Multi-Coloring 5

correct subset of the assigned multiple labels as the labels for the vertex.
The alternative would be to allow non-maximal sets in T and to require
equalities in (IS). In view of the ease of correcting the problem versus
the great increase in problem size that would result from expanding T ,
we choose the given formulation.

This formulation exhibits much less symmetry than (VC): vertices
are combined into independent sets and forcing a variable to 0 means
that the vertcies comprising the corresponding independent set will not
receive the same color in the solution. Furthermore, it is easy to show
[10] that the bound provided by the linear relaxation of (IS) will be at
least as good as the bound provided by the linear relaxation of (VC).

The fact remains, however, that (IS) can have far more variables than
can be reasonably handled directly. We resolve this difficulty by using
only a subset of the variables and generating more variables as needed.
This technique, called column generation, is well known for linear pro-
grams and has emerged as a viable technique for a number of integer
programming problems [5, 12]. The need to generate dual variables
(which requires something like linear programming) while still enforcing
integrality makes column generation procedures nontrivial for integer
programs. The procedures need to be suitably developed and their ef-
fectiveness is usually dependent on cleverly exploiting the characteristics
of the problem.

The following is a brief overview of the column generation technique in
terms of (IS). Begin with a subset T̄ of independent sets. Solve the linear
relaxation (replace the integrality constraints on xs with nonnegativity)
of (IS) restricted to t ∈ T̄ . This gives a feasible solution to the linear
relaxation of (IS) and a dual value πi for each constraint in (IS). Now,
determine if it would be useful to expand T̄ . This is done by solving the
following maximum weighted independent set problem (MWIS):

Maximize
∑
i∈V

πizi

Subject to zi + zj ≤ 1 ∀ (i, j) ∈ E

zi ∈ {0, 1} ∀ i ∈ V.

If the optimal solution to this problem is more than 1, then the zi

with value 1 correspond to an independent set that should be added to
T̄ . If the optimal value is less than or equal to 1, then there exist no
improving independent sets: solving the linear relaxation of (IS) over
the current T̄ is the same as solving it over T .

6

This process is repeated until there is no improving independent set.
If the resulting solution to the linear relaxation of (IS) has xt integer
for all t ∈ T̄ , then that corresponds to an optimal solution to (IS) over
T . When some of the xt are not integer, however, we are faced with the
problem of enforcing integrality.

To complete this algorithm, then, we need to do two things. First,
since (MWIS) is itself a difficult problem, we must devise techniques
to solve it that are sufficiently fast to be able to be used repeatedly.
Second, we must find a way of enforcing integrality if the solution to the
linear relaxation of (IS) contains fractional values. Standard techniques
of enforcing integrality (cutting planes, fixing variables) make it difficult
or impossible to generate improving independent sets. We discuss these
two problems in the next two sections.

3. SOLVING THE MAXIMUM WEIGHTED
INDEPENDENT SET PROBLEM

The maximum weighted independent set problem is a well-studied
problem in graph theory and combinatorial optimization. Since a clique
is an independent set in the complement of a graph, the literature on
the maximum weighted clique is equally relevant. Various solution ap-
proaches have been tried, including implicit enumeration [6], integer
programming with branch and bound [3, 4], and integer programming
with cutting planes [2, 15]. In addition, a number of heuristics have
been developed [16] and combined with general heuristic methods such
as simulated annealing [8]. In this section, we outline a simple recur-
sive algorithm based on the work of [11] and describe a simple greedy
heuristic that can be used to reduce the need for the recursive algorithm.

The basic algorithm for finding a maximum weighted independent set
(MWIS) in the graph G(V,E) is based on the following insight. For any
subgraph G1(V1, E1) of G, and a vertex i ∈ V1, the MWIS in G1 is either
the MWIS in G1 restricted to V1/{i} or it is i together with the MWIS
in AN(i), where AN(i) is the anti–neighbor set of i: the set of all vertices
j in V1 such that (i, j) /∈ E1. This insight, first examined in [11] for the
unweighted case, leads to the following recursion which can be turned
into a full program:

MWIS(V1 ∪ {k}) = max(MWIS(V1),MWIS({k} ∪ AN(k))),

where MWIS(S) represents the maximum weighted independent set
in the subgraph of G induced by the set of nodes in S.

A Branch-and-Price Approach For Graph Multi-Coloring 7

While this approach is reasonably effective for graphs that are not too
sparse, it can be improved by appropriately ordering the vertices to add
to V1. The following have been shown to be effective in reducing the
computational burden of the recursion:

Begin with V1 equal to a heuristically found independent set. We
use a simple greedy approach to find such a set, with the nodes
ordered by node weight.

Order the remaining vertices in order of degree from lowest to high-
est, and add them to V1 in that order. During the final stages of
the recursion, it is important to keep the anti–neighbor set small in
order to solve the MWIS on as small a graph as possible. Since ver-
tices with high degree have small anti–neighbor sets, those should
be saved for the end.

Use simple bounds to determine if a branch of the recursion can
possibly return a MWIS better than the incumbent. For instance,
if the total weight of the set examined is less than the incumbent,
the incumbent is necessarily better, so it is unnecessary to continue
the recursion.

Use a faster code for smaller problems. It appears that a weighted
version of the method of Carraghan and Pardalos [6] is faster for
smaller problems. This is particularly the case since it is able
to terminate when it is clear that no independent set is available
that is better than the incumbent. In our tests, which use rela-
tively small graphs, we use a variant of Carraghan and Pardalos
for all except the first level of recursion, which echoes the results
of Khoury and Pardalos in the unweighted case.

In the context of our column generation technique, it is not critical
that we get the best (highest weight) maximal independent set: it is
sufficient to get any set with weight over 1. This suggests that a heuristic
approach for finding an improving column may suffice in many cases. It
is only when it is necessary to prove that no set exists with weight over 1
(or when the heuristics fail) that it is necessary to resort to the recursion.
There are many heuristics for weighted independent sets. The simplest
is the greedy heuristic: begin with (one of) the highest weighted vertices
and add vertices in nonincreasing order of their weight making certain
that the resulting set remains an independent set.

This heuristic, in addition to being simple, is very fast, and seems to
work reasonably well. The resulting independent set can either be added
directly to (IS) (if it has value over 1) or can be used as a starting point
for the recursion.

8

4. BRANCHING RULE
A difficult part about using column generation for integer programs

is the development of branching rules to ensure integrality. Rules that
are appropriate for integer programs where the entire set of columns is
explicitly available do not work well with restricted integer programs
where the columns are generated by implicit techniques.

The fact that the variables in (IS) are general integers, rather than
binary variables, makes this issue even more difficult. For binary vari-
ables, the Ryan-Foster [18] branching rule is generally effective, but that
rule cannot be used for general integer variables. For (single-color per
node) graph coloring, given a solution to (IS), the Ryan-Foster rule iden-
tifies two nodes i and j, such that there is a fractional independent set
that includes both i and j. The branching is then on whether i and j
have the same color or different colors. For the purposes of generating
improving independent sets, this involves either contracting two nodes
into one or adding an edge to the graph, respectively, as developed in
[12]. Such changes do not affect the operation of the MWIS algorithm.

For general integers, it is not necessarily the case that there will be a
pair of vertices with a fractional number of colors in common. Vander-
beck [19] does show there are sets of nodes V1 and V2 such that the x
values for all independent sets that contain all nodes in V1 and no nodes
in V2 is fractional. If we let S(V1, V2) represent the currently generated
independent sets that contain all of V1 and none of V2, this leads to a
branching rule with ∑

s∈S(V1,V2)

xs ≤ k

in one branch, and ∑
s∈S(V1,V2)

xs ≥ k + 1

in the other. This can complicate the solving of the subproblem (MWIS)
since either case involves adding a constraint to (IS). This constraint
leads to a dual value that must be considered in the MWIS subproblem.

This problem can be addressed in one of two ways. Vanderbeck [19]
gives an approach where multiple subproblems are solved without mod-
ifying the structure of the subproblem (in our case, MWIS). This ap-
proach has the advantage of keeping the subproblem algorithm the same,
at the expense of requiring the solution of multiple subproblems. Fur-
ther, this approach has the disadvantage that the branching rule needs
to be more complicated than the node-pair rule given by the Ryan-Foster

A Branch-and-Price Approach For Graph Multi-Coloring 9

rule. Instead, the branching constraints need to consist of nested sets of
constraints.

The alternative approach is to directly embed the dual values asso-
ciated with branching constraints into the subproblem. To do this, we
will have to modify the solution approach to MWIS to allow costs on
arbitrary pairs of sets (V1, V2). This dual value is charged for any inde-
pendent set that contains all of V1 and none of V2.

Fortunately, this is a straightforward modification of the implicit enu-
meration approach in [12], similar to the modification we proposed in the
context of solving clustering problems [13] where the costs only appeared
on edges between nodes.

The key aspect of our implicit enumeration is that, at each step, the
nodes of the graph are divided into three sets: those that will be in the
independent set (I), those that are definitely not in the independent set
(NI), and those for which their status is unknown (UN). The duals
associated with (V1, V2) can similarly be assigned one of three states:
definitely to be charged (C), definitely not to be charged (NC) and
“not yet determined” (UC). For instance, if the current independent
set contains a member of V2 we know that the corresponding dual on
(V1, V2) will not be charged.

At each stage of the implicit enumeration, we can calculate an upper
bound by adding in the duals for all nodes in I, all the positive duals in
NI, all duals in C, and all positive duals in UC. The lower bound is the
sum of the duals in I and C. We can strengthen the bounds somewhat
by taking the dual for any entry in UC containing just one node in UN
and moving that dual value to the UN node. This gives a valid recursion
for the case of dual values on arbitrary node sets.

5. COMPUTATIONAL DETAILS
Our current implementation focuses on first optimizing the LP relax-

ation of (IS) via column generation. Then we determine the best integer
solution to the restricted (IS) formulation comprising of the columns
generated to optimize the LP relaxation at the root node of the branch-
and-price tree. Here we provide some implementation details and initial
computational results that we have obtained.

5.1 Implementation Issues
We generate a feasible initial multi-coloring using the greedy MWIS

heuristic repeatedly until all nodes are colored at least once. This gives
us an initial solution to the multi-coloring problem as well as a number
of columns to add to our linear program. We then generate columns

10

to improve the linear program. The following discussion pertains to
generation of columns to improve the linear program.

Improving the Linear Program.

Improving Column. As mentioned earlier, any solution to the
MWIS with value greater than 1 represents an improving column for
the linear program. In our current implementation, we set a target to
3.0 and our MWIS algorithm either returns the first such solution it
finds, failing which, it finds the exact solution. We have also experi-
mented with changing this target value to a higher number initially (an
approach to find a good set of columns as fast as possible) and then de-
creasing its value later on in the column generation. The effort required
to solve some difficult problems can be substantially reduced by suitably
altering this target value.

Ordering the Nodes. The order in which the nodes are to be con-
sidered can be specified in our MWIS algorithm. We have found that
ordering the nodes independently by nonincreasing weights or by nonin-
creasing degree is not as efficient as ordering them by considering both
at the same time. In our experiments we order the nodes in nonincreas-
ing values of the square root of the degree of the node times the weight
of the node.

Column Management. Another approach to optimizing the linear
program more quickly is to generate several columns rather than a single
column [5] at every iteration. For example, one could use improvement
algorithms that take existing columns with reduced cost equal to zero
and try to construct columns that might improve the linear program.
In our experiments, we generated more candidates by determining other
independent sets at each iteration such that every node belonged to at
least one indpendent set being added.

5.2 Computational Results
In our computational experiments, we use instances drawn from a

large number of sources. Our goal is to determine the robustness of the
approach. For some of these graphs, the coloring problem has no real
interpretation. We use these graphs as examples of structured graphs,
rather than just experimenting on random graphs. These graphs come
from a large test set at http://mat.tepper.cmu.edu/COLOR04.

Currently, we have not implemented the branching scheme. Rather,
we use the standardized branching to determine an integer solution from

A Branch-and-Price Approach For Graph Multi-Coloring 11

among the independent sets generated at the root node to optimize the
corresponding LP relaxation of the (IS) formulation. Hence our current
implementation provides an optimization-based heuristic procedure. We
report our results in Tables 1 and 2. The instance name identifies the
problem from the test set. The objective values corresponding to the
optimal LP relaxation solution and the intger solution obtained by our
method are listed under the columns labeled LP, and Heur, respectively.
The gap between these two objective values and the computational time
in seconds to optimize the linear relaxation and then to determine the
integer solution are listed in the next three columns. The column labeled
cons lists the number of constraints in the corresponding (IS) equal
to the number of vertices in the graph. The number of independent
sets generated to optimize the LP relaxation is listed under the column
labeled vars. The computational results reported here are limited to the
best integer solution found in at most 1000 seconds using CPLEX default
branching scheme on DEC ALPHA workstation. As can be seen from
the gap between the LP bound and the corresponding (heuristic) integral
solution obtained by our methodology, this branch-and-price framework
looks promising for finding optimal multi-coloring solutions for small to
moderate size graphs. In Table 1, we report results on geometric graphs
with up to 120 nodes. The best integer solution found for these is within
1 of the optimal multi-coloring in the worst case. The cpu time is also
reasonable. A similar performance is seen for the random graphs of up
to 100 nodes except for R100-1ga where the gap is 2 between the LP
bound and the best integer solution found in 1000 seconds. The gaps
are higher for some miscellaneous graphs in Table 2.

5.3 Further Research
A full implementation of the branching is necessary to complete the

branch-and-price framework proposed here. Based on the initial results,
there is hope that the LP bound is strong and one may not need to have a
very deep branch-and-price tree to find optimal multi-colorings for many
structured graphs. Further exploration will explore the robustness of this
framework for general graphs.

It will also be interesting to see the comparison between using this
branch-and-price scheme with a branch-and-price scheme that uses mod-
ified branching scheme proposed by Vanderbeck [19].

Finally, it will be interesting to see if this framework can be suitably
exploited to solve other variations and extensions of coloring problems.

12

Table 1. Results for Geometric Graphs

Instance LP Heur Gap cpu-lp cpu-ip cons vars

geom20 28.00 28 0 0 0 20 31
geom20a 30.00 30 0 0 0 20 29
geom20b 8.00 8 0 0 0 20 34

geom30 26.00 26 0 0 0 30 49
geom30a 40.00 40 0 0 0 30 65
geom30b 11.00 11 0 0 0 30 67

geom40 31.00 31 0 0 0 40 76
geom40a 46.00 46 0 0 0 40 69
geom40b 14.00 14 0 0 0 40 96

geom50 35.00 35 0 0 0 50 96
geom50a 61.00 61 0 0 0 50 106
geom50b 17.00 18 1 0 0 50 121

geom60 36.00 36 0 0 0 60 124
geom60a 65.00 65 0 0 0 60 120
geom60b 22.00 22 0 0 0 60 129

geom70 44.00 44 0 0 0 70 131
geom70a 71.00 71 0 0 0 70 130
geom70b 22.00 23 1 0 1 70 160

geom80 63.00 63 0 0 0 80 130
geom80a 68.00 68 0 0 0 80 168
geom80b 25.00 26 1 0 1 80 211

geom90 51.00 52 1 0 1 90 171
geom90a 65.00 66 1 0 5 90 243
geom90b 28.00 29 1 0 2 90 213

geom100 60.00 60 0 0 1 100 180
geom100a 81.00 81 0 0 2 100 241
geom100b 30.00 31 1 0 25 100 276

geom110 62.00 63 1 0 10 110 212
geom110a 91.00 92 1 0 141 110 260
geom110b 37.00 37 0 0 1 110 214

geom120 63.50 64 0 2 167 120 268
geom120a 93.00 94 1 2 303 120 329
geom120b 34.00 35 1 1 462 120 302

A Branch-and-Price Approach For Graph Multi-Coloring 13

Table 2. Results for Random and Other Miscellaneous Graphs

Instance LP Heur Gap cpu-lp cpu-ip cons vars

R50-1ga 12.00 12 0 0 0 50 91
R50-1gba 45.00 45 0 0 0 50 82

R50-5ga 28.12 29 0 0 0 50 482
R50-5gba 99.68 100 0 0 0 50 441

R50-9ga 64.00 64 0 0 0 50 253
R50-9gba 228.00 228 0 0 0 50 177

R75-1ga 14.00 15 1 1 1 70 262
R75-1gba 53.00 54 1 0 4 70 224

R75-5ga 37.17 38 0 2 2 75 1290
R75-5gba 130.84 131 0 2 4 75 1262

R75-9ga 93.50 94 0 0 0 75 354
R75-9gba 328.00 328 0 0 0 75 372

R100-1ga 15.00 17* 2 10 1000 100 612
R100-1gba 56.00 57 1 4 127 100 492

R100-5ga 41.96 43 1 7 38 100 2292
R100-5gba 152.57 153 0 6 228 100 2171

R100-9ga 117.29 118 0 0 0 100 786
R100-9gba 421.50 422 0 0 0 100 640

myciel3 10.50 11 0 0 0 11 27
myciel3b 31.50 32 0 0 0 11 24

myciel4 11.71 12 0 0 0 23 83
myciel4b 38.80 39 0 0 0 23 70

myciel5 13.32 14 0 0 0 47 243
myciel5b 44.83 45 0 0 0 47 189

myciel6 15.47 16 0 1 3 95 578
myciel6b 57.14 58 0 2 1 95 595

myciel7 16.37 17 0 30 3 191 1379
myciel7b 60.74 61 0 18 23 191 1096

queen8-8 28.00 29 1 0 1 64 266
queen8-8b 113.00 113 0 0 0 64 148

queen9-9 35.00 36 1 0 2 81 215
queen9-9b 135.00 135 0 0 2 81 242

queen10-10 38.00 40 2 1 123 100 291
queen10-10b 136.00 136 0 0 42 100 282

queen11-11 41.00 44* 3 1 1000 121 349
queen11-11b 140.00 142* 2 3 1000 121 443

queen12-12 42.00 47* 5 38 1001 144 701
queen12-12b 163.0 165.0* 2 1 1000 144 376

DSJC125.1 19.00 21 2 2 57 125 321
DSJC125.1b 67.00 68 1 2 63 125 368

DSJC125.5 52.87 55* 2 20 1001 125 3591
DSJC125.5b 161.5 164.0* 2 19 1000 125 3733

DSJC125.9 139.00 140 1 1 1 125 1388
DSJC125.9b 496.25 497 0 1 0 125 1270

14

References
[1] Aardal, K.I., S.P.M. Van Hoesel, A.M.C.A. Koster, C. Manino, and A. Sassano.

(2001). Models and Solution Techniques for Frequency Assignment Problems
4OR 1:4, 261–317.

[2] Balas, E. and H. Samuelsson. (1977). A node covering algorithm, Naval Research
Logistics Quarterly 24:2, 213–233.

[3] Balas, E. and J. Xue. (1991). Minimum weighted coloring of triangulated graphs,
with application to maximum weight vertex packing and clique finding in arbi-
trary graphs, SIAM Journal on Computing 20:2, 209–221.

[4] Balas, E. and C. S. Yu. (1986). Finding a maximum clique in an arbitrary graph,
SIAM Journal on Computing 15:4, 1054–1068.

[5] Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and
P. H. Vance. (1998). Branch-and-Price: Column Generation for Huge Integer
Programs, Operations Research 46:3, 316–329.

[6] Carraghan, C. and P. M. Pardalos. (1990). An exact algorithm for the maximum
clique problem, Operations Research Letters 9, 375–382.

[7] Coffman Jr., E.G., M.R. Garey, D.S. Johnson, and A.S. Lapaugh. (1985).
Scheduling File Transfers SIAM Journal on Computing 14:4, 743-780.

[8] Jerrum, M. (1992). Large cliques elude the metropolis process, Random Struc-
tures and Algorithms 3:4, 347–360.

[9] Johnson, D.S. A. Mehrotra, and M.A. Trick. (2002). Computational Challenge
on Graph Coloring and its Generalizations International Symposium on Math-
ematical Programming, Copenhagen, Denmark.

[10] Johnson, E.L. (1989). Modeling and strong linear programs for mixed integer
programming, Algorithms and Model Formulations in Mathematical Program-
ming, NATO ASI 51, S.W. Wallace (ed.), Springler-Verlag Berlin, Heidelberg,
1-43.

[11] Khoury, B.N. and P. M. Pardalos. (1996). An algorithm for finding the maximum
clique on an arbitrary graph, Second DIMACS Challenge: Cliques, Coloring, and
Satisfiability, DIMACS Series on Discrete Mathematics and Theoritical Com-
puter Science, D. S. Johnson and M. A. Trick (eds.), American Mathematical
Society, Providence.

[12] Mehrotra, A. and M. A. Trick. (1996). A column generation approach for exact
graph coloring, INFORMS Journal on Computing, 8:4, 133-151.

[13] Mehrotra, A. and M. A. Trick. (1998). Cliques and Clustering: A Combinatorial
Approach, Operations Research Letters, 22:1, 1-12.

[14] Narayanan, L. (2002). Channel Assignment and Graph Multi-coloring, in Hand-
book of Wireless Networks and Mobile Computing, Wiley.

[15] Nemhauser, G.L. and L. E. Trotter. (1975). Vertex packings: Structural prop-
erties and algorithms, Mathematical Programming 8, 232–248.

[16] Pittel, B. (1982). On the probable behaviour of some algorithms for finding
the stability number of a graph, Mathematical Proceedings of the Cambridge
Philosophical Society 92, 511–526.

[17] Prestwich, S. (2006). Generalized Graph Coloring by a Hybrid of Local Search
and Constraint Programming, Discrete Applied Mathematics, to appear.

A Branch-and-Price Approach For Graph Multi-Coloring 15

[18] Ryan, D.M. and B.A. Foster. (1981). An integer programming approach to
scheduling, in Computer Scheduling of Public Transport Urban Passenger Vehi-
cle and Crew Scheduling, North-Holland, Amsterdam, 269-280.

[19] Vanderbeck, F. (2005). Branching in Branch-and-Price: A Generic Scheme,
manuscript, Applied Mathematics, University Bordeaux 1, F-33405 Talence
Cedex, France.

