
The Timetable Constrained Distance Minimization Problem

Rasmus V. Rasmussen1 and Michael A. Trick2

1 Department of Operations Research, University of Aarhus, Ny Munkegade,

Building 1530, 8000 Aarhus C, Denmark
2 Tepper School of Business, Carnegie Mellon University, Pittsburgh PA 15213, USA

Abstract. We define the timetable constrained distance minimization problem (TCDMP) which is a

sports scheduling problem applicable for tournaments where the total travel distance must be min-

imized. The problem consists of finding an optimal home-away assignment when the opponents of

each team in each time slot are given. We present an integer programming, a constraint programming

formulation and describe two alternative solution methods: a hybrid integer programming/constraint

programming approach and a branch and price algorithm. We test all four solution methods on bench-

mark problems and compare the performance. Furthermore, we present a new heuristic solution method

called the circular traveling salesman approach (CTSA) for solving the traveling tournament problem.

The solution method is able to obtain high quality solutions almost instantaneously, and by applying

the TCDMP, we show how the solutions can be further improved.

Keywords Timetabling; Integer Programming; Constraint Programming; Sports scheduling.

1 Introduction

Sports scheduling has proved to be a research area containing a large number of highly applicable problems

which are very hard to solve. Furthermore, good solutions may lead to great savings in travel costs due to

reduced travel distances or may increase the revenue earned from TV stations since special requirements

can be satisfied. From an operations research perspective this makes sports scheduling constitute an ideal

research area.

Two problems have dominated the field of sports scheduling: the problem of minimizing the total travel

distance and the problem of minimizing the total number of breaks. A break is two consecutive home games

or two consecutive away games and the number of breaks is normally minimized when teams return home

after each away game. In this way teams get alternating patterns of home and away games and the supporting

fans are able to watch their team regularly throughout the season. However, in some leagues, the teams move

directly from one away game to the next without returning home due to the large distances. In this kind

of tournament, the travel costs constitute a substantial part of the overall costs and a schedule minimizing

the total travel distance is preferred. The traveling tournament problem (TTP) [5] captures the fundamental

difficulties when scheduling tournaments with break and distance aspects and many solution methods have

been developed for solving this problem, see for instance [1, 3, 6, 20, 24].

In the literature concerning break minimization, a decomposition approach separating the problem into

two subproblems is often used [4, 8–10, 16, 17, 21]. One of the subproblems finds a home-away assignment,

while the other problem determines when the teams meet. The order of these subproblems varies but Trick [22]

suggests that the most constrained subproblem should be solved first. When the timetable for the schedule



2

is solved first, without assignment of home/away games, the second phase is then the break minimization

problem of finding a home-away assignment minimizing the total number of breaks. The problem has received

much attention and effective solution methods have been obtained. Régin [18] solves the problem using

constraint programming, Trick [22] uses integer programming and later Elf, Jünger, and Rinaldi [7] and

Miyashiro and Matsui [15] formulate the problem as a maximum cut problem and present corresponding

solution methods.

In this paper we consider a generalization to the break minimization problem when distances are con-

sidered instead of breaks. The problem is denoted the timetable constrained distance minimization problem

(TCDMP) and it applies for example when leagues face many requests from TV networks. In order to in-

crease the revenue earned from TV networks, the sports leagues must be able to accommodate the requests

from the TV networks. Typically, these requests concern high-quality games since the TV networks want to

schedule these games in such a way that the number of viewers is maximized. When many of these requests

are present, it may be necessary to determine all the opponents before finding a home-away assignment and,

in this case, a good solution for the TCDMP becomes important.

Approaches for the break minimization cannot be applied directly to handle the distance minimization

problem. For instance, in maximum cut approaches, a graph is created the goal is to find a bipartition of

the nodes so as to maximize the number of edges across the cut. An edge across the cut corresponds to

a non-break, so maximizing the number of non-breaks is equivalent to minimizing the number of breaks.

Once distances are added, however, the objective information is now no longer just embedded in edges

across a cut. Such edges correspond to travel between a home game and an away game, or vice versa, but

travel corresponding to consecutive away games are not represented in the cut. So it does not seem that a

straightforward modification of maximum cut approaches can be applied to TCDMP.

To solve the TCDMP we present and compare four solution methods. The problem is formulated as an

IP model and a CP model which are solved using CPlex [12] and Solver [13], respectively. Furthermore, we

present a hybrid IP/CP solution method utilizing the strengths of both techniques by using CP for solving

feasibility problems and IP for solving an optimization problem. Finally, the problem is solved by using a

branch and price algorithm. It would be appealing to try to formulate this problem as a weighted maximum

cut problem, mimicking the work of Elf et al. [7] and Miyashiro and Matsui [15], but it is not possible to

accurately model the distance traveled through just the cut values.

In addition to the TCDMP we also present a new heuristic solution method for the TTP. This method

called the circular traveling salesman approach (CTSA) takes advantage of already obtained solutions for

one instance class of the TTP to obtain solutions for the general TTP problem. By doing so, CTSA is able

to obtain solutions almost instantaneously since it only needs to solve a traveling salesman problem with up

to 16 nodes. The solutions obtained are close to the known upper bounds and, besides being used as final

schedules, they can be used as initial solutions for some of the metaheuristic solution methods for the TTP.

In the following section, we give a short introduction to sports scheduling, define the TTP and the

TCDMP and present the IP and the CP formulations for the TCDMP. In Section 3, we outline the hybrid

IP/CP approach and Section 4 explains the branch and price algorithm. Afterwards, Section 5 presents the

computational results of the 4 solution methods for the TCDMP before Section 6 outlines the CTSA and

presents the solutions for some of the benchmark problems. Finally, we give some concluding remarks in

Section 7.



3

2 Problem Formulation

In this section we will give a formal definition of both the TTP and the TCDMP and present integer and

constraint programming formulations for the TCDMP. Before we define the problems, let us give a brief

introduction to some of the sports scheduling terminology.

We consider double round robin tournaments with an even number of teams n (an odd number of teams

can be handled by adding a dummy team, representing a bye for a team). A double round robin tournament

consists of two games between all pairs of teams leading to a total of n(n− 1) games. We assume that these

games are distributed evenly over 2(n− 1) time slots such that all teams play exactly one game in each slot.

All teams have a home venue and play one game against all other teams at this venue. These games

are called home games while games played at another venue are called away games. If a team plays two

consecutive home games or away games, we say that the team has a break in the last of the two slots.

In Figure 2.1, we give an example of a schedule for a double round robin tournament. The columns

correspond to slots while the rows correspond to teams and the entry (i, s) gives the opponent of team i in

slot s. An @ means that the team plays away against the opponent stated right after the @ and we have

highlighted breaks using boldface.

Slot 1 2 3 4 5 6 7 8 9 10

Team 1: @6 3 @5 2 @4 6 @3 5 @2 4

Team 2: @5 6 4 @1 3 5 @6 @4 1 @3

Team 3: 4 @1 6 5 @2 @4 1 @6 @5 2

Team 4: @3 5 @2 @6 1 3 @5 2 6 @1

Team 5: 2 @4 1 @3 6 @2 4 @1 3 @6

Team 6: 1 @2 @3 4 @5 @1 2 3 @4 5

Fig. 2.1. Schedule for a double round robin tournament with 6 teams.

A schedule for a round robin tournament can be separated into two components, a timetable and a pattern

set. The timetable gives the opponent of each team in each slot without considering venues. The pattern

set consists of a pattern for each team and these patterns are vectors with an entry for each slot, saying

whether the corresponding team plays home or away. The combination of a timetable and a pattern set gives

a schedule for the tournament. Figure 2.2 shows the timetable and the pattern set for the schedule shown in

Figure 2.1. In the pattern set, 1 represents a home game while 0 represents an away game.

Slot 1 2 3 4 5 6 7 8 9 10

Team 1: 0 1 0 1 0 1 0 1 0 1

Team 2: 0 1 1 0 1 1 0 0 1 0

Team 3: 1 0 1 1 0 0 1 0 0 1

Team 4: 0 1 0 0 1 1 0 1 1 0

Team 5: 1 0 1 0 1 0 1 0 1 0

Team 6: 1 0 0 1 0 0 1 1 0 1

(a)

Slot 1 2 3 4 5 6 7 8 9 10

Team 1: 6 3 5 2 4 6 3 5 2 4

Team 2: 5 6 4 1 3 5 6 4 1 3

Team 3: 4 1 6 5 2 4 1 6 5 2

Team 4: 3 5 2 6 1 3 5 2 6 1

Team 5: 2 4 1 3 6 2 4 1 3 6

Team 6: 1 2 3 4 5 1 2 3 4 5

(b)

Fig. 2.2. (a) Pattern set, (b) Timetable.

A repeater in a schedule are two consecutive games between the same opponents.



4

Using this terminology we are now able to define the TTP and the TCDMP.

Definition 1 (TTP [5]). Given n teams, a distance matrix specifying the distance between the venues and

an upper bound UB on the number of consecutive home and consecutive away games, find a feasible schedule

without repeaters which minimizes the total distance traveled by all teams. It is assumed every team begins

and ends at its home venue.

Multiple instance classes of the TTP exist and among them is the circular distance TTP. In this version

all teams are placed on a circle with a distance of exactly 1 to both neighbors and it is assumed that the

teams travel on the circle when they visit each other. This problem will be used in the heuristic solution

method for the TTP.

Definition 2 (TCDMP). Given a timetable for a double round robin tournament with n teams, a distance

matrix specifying the distances between the venues and an upper bound UB on the number of consecutive

home and consecutive away games, find a feasible pattern set which minimizes the total distance traveled by

all teams.

We have modelled the TCDMP using both IP and CP and the models are presented in the following

two subsections. In the rest of the paper, we let n denote the number of teams, while T denotes the set of

teams. The set of slots is denoted S, and we let S0 = S ∪ {0}. The distance matrix is represented by D, and

entrance Di1i2 contains the distance between the venue of team i1 and the venue of team i2. TT denotes

the timetable and entrance TTis gives the opponent of team i in slot s. Notice that DTTisTTis+1 is the travel

distance of team i between slots s and s + 1 if team i plays away in both slots.

2.1 Integer Programming Formulation

To formulate the problem as an IP model, we use a binary variable his for each i ∈ T and each s ∈ S. his

equals 1 if team i plays home in slot s and it equals 0 if it plays away. To calculate the total travel distance,

we use an integer variable, dis for each i ∈ T and each s ∈ S0, which is equal to the distance team i travels

between slot s and slot s + 1. We use the dummy slots 0 and 2n− 1 to make sure that all teams start and

end at home. This gives the following IP model.

min
∑
i∈T

∑
s∈S0

dis (2.1)

s.t. dis ≥ (1− his − his+1)DTTisTTis+1 ∀i ∈ T, ∀s ∈ S0 (2.2)

dis ≥ (his − his+1)DiTTis+1 ∀i ∈ T, ∀s ∈ S0 (2.3)

dis ≥ (−his + his+1)DTTisi ∀i ∈ T, ∀s ∈ S0 (2.4)

hi0 = 1 ∀i ∈ T (2.5)

hi2n−1 = 1 ∀i ∈ T (2.6)∑
s∈S

his = n− 1 ∀i ∈ T (2.7)

hi1s + hi2s = 1 ∀i1, i2 ∈ T, i1 < i2, ∀s ∈ S, TTi1s = i2 (2.8)

his1 + his2 = 1 ∀i ∈ T, ∀s1, s2 ∈ S, s1 < s2, TTis1 = TTis2 (2.9)



5

ŝ+UB∑
s=ŝ

his ≤ UB ∀i ∈ T, ∀ŝ ∈ {1, . . . , 2(n− 1)− UB} (2.10)

ŝ+UB∑
s=ŝ

his ≥ 1 ∀i ∈ T, ∀ŝ ∈ {1, . . . , 2(n− 1)− UB} (2.11)

his ∈ {0, 1} ∀i ∈ T, ∀s ∈ {0, . . . , 2n− 1} (2.12)

dis ∈ Z+ ∀i ∈ T, ∀s ∈ S0 (2.13)

Constraints (2.2) - (2.4) give lower bounds on the distance team i travels between slots s and s + 1 when

i plays away in the two slots, when it plays home and away and when it plays away and home, respectively.

Constraints (2.5) and (2.6) ensure that all teams start and end at home and constraints (2.7) make sure

that all teams have exactly n − 1 home games. Constraints (2.8) require that, when teams i1 and i2 meet

in slot s, one of the teams must play home and the other must play away, while constraints (2.9) make sure

that team i plays one home game and one away game in two slots with the same opponent. Finally, the

constraints (2.10) and (2.11) give upper bounds on the number of consecutive home games and the number

of consecutive away games.

2.2 Constraint Programming Formulation

When formulating the problem as a CP model, we use variables similar to the variables used in the IP

model, but the CP model allows us to reformulate the constraints. In particular, we are able to formulate the

constraints (2.7), (2.10) and (2.11) as a single constraint called sequence and we can use logical expressions

to determine the travel distance. This gives the following CP model.

min
∑
i∈T

∑
s∈S0

dis (2.14)

s.t. (his = 1) ∧ (his+1 = 1) ⇒ (dis = 0) ∀i ∈ T, ∀s ∈ S0 (2.15)

(his = 0) ∧ (his+1 = 1) ⇒ (dis = DTTisi) ∀i ∈ T, ∀s ∈ S0 (2.16)

(his = 1) ∧ (his+1 = 0) ⇒ (dis = DiTTis+1) ∀i ∈ T, ∀s ∈ S0 (2.17)

(his = 0) ∧ (his+1 = 0) ⇒ (dis = DTTisTTis+1) ∀i ∈ T, ∀s ∈ S0 (2.18)

sequence(1, UB,UB + 1, [hi1, . . . , hi2n−2], [1], [n− 1]) ∀i ∈ T (2.19)

his1 6= his2 ∀i ∈ T, ∀s1, s2 ∈ S, s1 < s2, TTis1 = TTis2 (2.20)

his 6= hTTiss ∀i ∈ T, ∀s ∈ S (2.21)

hi0 = 1 ∀i ∈ T (2.22)

hi2n−1 = 1 ∀i ∈ T (2.23)

his ∈ {0, 1} ∀i ∈ T, ∀s ∈ {0, . . . , 2n− 1} (2.24)

dis ∈ Z+ ∀i ∈ T, ∀s ∈ S0 (2.25)

The constraints (2.15) - (2.18) determine the travel distance of team i between slots s and s+1, depending on

whether team i plays home or away in the two slots. The sequence constraints (2.19) are global constraints

with the syntax sequence(min,max, width, varV ec, valueV ec, cardV ec) where min, max and width are



6

numbers, varV ec is a vector of variables and valueV ec and cardV ec are vectors with the same index set.

The constraints are satisfied if each entrance in cardV ec equals the number of variables in varV ec, which are

equal to the corresponding entrance in valueV ec and for each value in valueV ec at least min and at most

max variables are equal to this value in any subsequence of length width. In our case the constraint says

that team i must play exactly n − 1 home games and in UB + 1 consecutive slots it cannot play less than

one home game or more than UB home games. Constraints (2.20) state that team i must play one home

game and one away game in two slots where it meets the same opponent and constraints (2.21) require that

the opponent of team i plays home (away) if team i plays away (home). Constraints (2.22) and (2.23) make

sure that all teams start and end home.

The sequence constraint is a key aspect of this formulation. Filtering for the sequence constraint is

currently an active research area. In our work, we rely on the filtering algorithm in ILOG Solver [13] based

on the work in [19]. van Hoeve et al. [25] survey the strength of alternative sequence filtering approaches.

In the following sections, we present a hybrid IP/CP approach and a branch and price algorithm for

solving the TCDMP. A Benders decomposition approach similar to the method presented in [17] has also

been implemented but the reduction in time used to solve the master problem cannot offset the additional

iterations which are required compared to the hybrid IP/CP approach.

3 Hybrid IP/CP Approach

The first of the specialized solution methods is a hybrid IP/CP approach which decomposes the problem

into two phases. Phase 1 generates all feasible patterns for each team in the tournament and Phase 2 finds

the optimal pattern set by assigning each team to one of the patterns found in Phase 1.

CP is in general very effective at solving feasibility problems and it has the advantage of being able to

find all solutions to a specific problem instead of a single solution. These characteristics make a CP model

ideal for finding feasible patterns in Phase 1. On the other hand, IP is typically stronger than CP when

it comes to optimization problems, since the linear relaxation can be used to prune suboptimal solutions.

Therefore IP is used in Phase 2 to choose the optimal patterns from the patterns generated in Phase 1. The

details of the two phases are explained below.

3.1 Phase 1

In order to generate all feasible patterns, we use a CP model for each team and find all feasible solutions to

each of the models. Each pattern must contain exactly n − 1 home games and satisfy the upper bound on

the number of consecutive home games and consecutive away games. Furthermore, a pattern for a specific

team i must satisfy that, for all pairs of slots s1 and s2 where TTis1 = TTis2 , the pattern has both a home

game and an away game.

To formulate a CP model for finding all feasible patterns of team i, we use a binary variable hs for each

s ∈ S. As in the earlier sections, hs = 1 implies a home game in slot s and hs = 0 implies an away game.



7

The CP model for team i looks as follows.

solve:

sequence(1, UB,UB + 1, [h1, . . . , h2(n−1)], [1], [n− 1]) (3.1)

hs1 6= hs2 ∀s1, s2 ∈ S, s1 < s2, TTis1 = TTis2 (3.2)

hs ∈ {0, 1} ∀s ∈ S (3.3)

Constraint (3.1) corresponds to constraint (2.19) in the CP formulation and makes sure that the number

of home games is correct and the upper bound on consecutive home games and consecutive away games is

satisfied. Constraints (3.2) correspond to the constraints (2.20) and make sure that the patterns are feasible

with respect to the timetable.

For each team i ∈ T , we let Pi denote the set of feasible patterns and for each j ∈ Pi, we let hjs represent

the entry hs of pattern j. We also calculate the distance team i must travel, if it uses pattern j, and denote

it dij . The distance can be calculated since the timetable gives us the opponent of each slot and the pattern

tells if team i plays home or away.

3.2 Phase 2

In Phase 2, we must find an optimal allocation of each team i to a pattern j ∈ Pi, such that the total travel

distance is minimized and the pattern set is feasible with respect to the timetable.

To formulate an IP model for this problem, we use a binary variable xij for each i ∈ T and each j ∈ Pi.

The variable is 1 if team i is assigned to pattern j and 0 otherwise. We also use the home-away parameter hjs

for each pattern j and each slot s and the distance parameter dij for each team i and each pattern j ∈ Pi.

min
∑
i∈T

∑
j∈Pi

dijxij (3.4)

s.t.
∑
j∈Pi

xij = 1 ∀i ∈ T (3.5)

∑
i∈{i1,i2}

∑
j∈Pi

hjsxij = 1 ∀i1, i2 ∈ T, i1 < i2, ∀s ∈ S, TTi1s = i2 (3.6)

xij ∈ {0, 1} ∀i ∈ T, ∀j ∈ Pi (3.7)

Constraints (3.5) are the assignment constraints saying that all teams must be assigned to a feasible pattern

and constraints (3.6) make sure that when 2 teams meet, one of the teams play home and the other plays

away. These two constraints are enough to ensure a feasible pattern set with respect to the timetable since

we know from Phase 1 that all the teams play one home game and one away game in two slots where they

meet the same opponent.

4 Branch and Price

In addition to the hybrid IP/CP approach, we developed a branch and price algorithm (see Barnhart,

Johnson, Nemhauser, Savelsbergh, and Vance [2] for a detailed description of branch and price) to solve the

TCDMP. This method has successfully been applied to the TTP and it is to date the best exact solution

method for the TTP.



8

The branch and price algorithm assigns teams to patterns by solving a linear programming (LP) problem

which is restricted to only contain a subset of the feasible patterns instead of all the feasible patterns. This

problem is known as the master problem.

The solution of the master problem may be fractional since we use an LP problem and it might not be

optimal since we consider only a subset of the patterns. The optimality issue is handled by solving a pricing

problem which finds patterns to the master problem with negative reduced costs. These patterns are added

to the master problem and it is re-solved. If no patterns with negative reduced costs exist and the solution

is fractional, the algorithm uses branch and bound to obtain an integer solution.

There are a number of pieces that go into a branch and price approach. These include:

1. the approach for finding an initial solution,

2. a method for solving the master problem,

3. a method for solving the subproblem,

4. a branching rule consistent with the subproblem solution method, and

5. an order in which to branch on the nodes.

Since our approach is a relatively standard branch and price approach, we will summarize our choices.

In order to find an initial feasible pattern set, we use a CP model. The model corresponds to the CP

model presented in Section 2.2 but, in this model, we ignore the travel distance, since we are only looking for

a feasible solution. We have tested the effect of generating an additional number of good patterns initially.

In this way fewer patterns have to be generated during the search and less time is spent on solving the

pricing problem. However, the overall computation time increased when this approach were used since the

computation time of the master problem increased and additional branching took place before the optimal

solution were found.

The master problem of the branch and price algorithm is almost identical to the linear relaxation of

the problem solved in Phase 2 of the hybrid IP/CP approach. The only differences are that the problem

is restricted since Pi does not contain all the feasible patterns of team i, and that a number of branching

constraints are added. The number of branching constraints corresponds to the level of the current node in

the branch and bound tree. The master problem is solved as a linear program.

When the master problem has been solved we use a pricing problem for finding patterns with negative

reduced costs. To solve the pricing problem, we use an IP model since we want to minimize the reduced

cost. Alternatively, a CP model could be used to generated patterns with negative reduced costs but we

have obtained the best results when the reduced cost is minimized. The pricing problem is solved for each

team and in case the reduced cost is less than zero, we add the pattern to the master problem. When the

pricing problem has been solved for all teams, we re-solve the master problem if patterns have been added.

Otherwise we need to branch.

Instead of branching on one of the fractional values from the master problem, we use higher order

branching. We choose a team î and a slot ŝ and create two new nodes by letting team î play home in slot ŝ

in one of the nodes and away in the other. We have two alternative methods for finding the team and slot.

In the first, we find a team and slot where the current solution is fractional, but close to 1; in the second,

we find a team and slot where it is fractional and close to 0.5.

The final piece is to define the node selection approach in exploring the branch and bound tree. Again,

we have two approaches.



9

The first strategy is the well-known depth first strategy. This strategy chooses one of the child nodes of

the current strategy if any exists and otherwise it backtracks. The strategy corresponds to a last in, first out

(LIFO) strategy since it always chooses the last node which has been added.

The second strategy is a best lower bound strategy which attempts to find a node that is likely to include

a good solution. If there is a lower bound at each node, then nodes with smaller lower bounds may contain

better solutions for our minimization. In our case, we use the objective value of the parent node as lower

bound and therefore the strategy chooses the node with the highest parent value. Ties are broken arbitrarily.

With these pieces, we have a branch and price approach where linear programming is used to solve the

master problem, constraint programming is used to generate initial columns, and integer programming is

used to generate new patterns relative to the dual prices of the master problem. There are two choices for

branching and two node selection approaches, for a total of four variants.

5 Computational Results for the TCDMP

In order to explore the computational complexity of the TCDMP and to compare the proposed solution

methods, we have tested all 4 methods on 60 instances ranging from 6 to 16 teams.

At the homepage http://mat.gsia.cmu.edu/TOURN/, Michael Trick’s benchmark problems for the TTP

can be found. These problems have been studied intensively and a number of solutions are presented at the

web page. By letting UB = 3, using the presented distance matrices and permuting the slots of the presented

TTP solutions, we have generated instances of the TCDMP.

For each even number of teams from 6 to 16 we have generated 10 instances by permuting slots of the

following solutions. For 6 teams we have used the solution of Easton May 7, 1999; for 8 teams, the solution of

Easton January 27, 2000; for 10 teams, the solution of Langford, June 13, 2005 and for 12, 14 and 16 teams,

the solution of Zhang Xingwen August 28, 2002. All the tests have been performed on an Intel Xeon 2.67

GHz processor with 6 GB RAM. The IP and CP models have been solved by using OPL Studio [11] with

the callable libraries CPLEX and Solver. The hybrid IP/CP approach and the branch and price algorithm

have been implemented in OPL script.

The computational results are presented in Table 5.1. For each number of teams and each solution method,

the table shows the number of instances solved and the minimum, average and maximum time used on the

solved instances. We have used a time limit of 1800 seconds and instances which have not been solved within

this time limit are not included in the average. Since we have 2 node selection strategies and two branching

strategies for the branch and price algorithm, we present four versions of this solution method: BP-df-1,

BP-df-2, BP-bv-1 and BP-bv-2. The terms df and bv refer to depth first and best value node selection,

respectively, while 1 and 2 refer to the first and the second branching strategy.

Table 5.1 shows that, even though CP is better than IP at solving instances with 6 teams, it is not able to

solve any of the instances with 8 teams. IP is doing a little better and is able to solve all the instances with

less than 10 teams and a single instance with 10 teams. The fact that IP is able to handle larger instances

than CP is no surprise, since IP models often excel compared to CP models when optimization problems are

considered.

Both the hybrid IP/CP approach and the branch and price algorithm clearly outperform the IP and

CP models. We see that the hybrid IP/CP approach shows the best results and, in addition to being the

fastest on average, it is also the most stable of the solution methods. The only drawback of this method is a



10

Table 5.1. Computational Results for the TCDMP.

n Solution Number Time (s)

method solved Min. Avg. Max.

6 IP 10 0.42 22.51 217.18
6 CP 10 8.03 17.00 24.94
6 IP/CP 10 0.06 0.07 0.08
6 BP-df-1 10 0.83 1.59 3.34
6 BP-bv-1 10 0.82 1.27 2.29
6 BP-df-2 10 0.84 1.74 3.43
6 BP-bv-2 10 0.83 1.25 2.19

8 IP 10 60.72 397.35 954.56
8 CP 0 - - -
8 IP/CP 10 0.41 0.44 0.47
8 BP-df-1 10 2.87 11.74 21.65
8 BP-bv-1 10 2.88 6.99 11.90
8 BP-df-2 10 2.83 10.05 22.94
8 BP-bv-2 10 2.82 6.15 8.19

10 IP 1 1273.74 1273.74 1273.74
10 CP 0 - - -
10 IP/CP 10 1.79 2.02 2.34
10 BP-df-1 10 7.23 27.01 157.56
10 BP-bv-1 10 7.05 16.55 46.50
10 BP-df-2 10 6.98 24.66 64.49
10 BP-bv-2 10 7.03 15.51 44.34

12 IP 0 - - -
12 CP 0 - - -
12 IP/CP 10 10.16 12.19 18.19
12 BP-df-1 10 24.29 281.60 1386.09
12 BP-bv-1 10 23.77 130.31 434.97
12 BP-df-2 10 23.80 243.23 1038.98
12 BP-bv-2 10 23.56 151.74 650.79

14 IP 0 - - -
14 CP 0 - - -
14 IP/CP 10 35.52 38.07 42.83
14 BP-df-1 10 49.62 95.00 248.32
14 BP-bv-1 10 48.61 91.71 240.47
14 BP-df-2 10 48.69 165.40 750.18
14 BP-bv-2 10 48.74 72.78 164.82

16 IP 0 - - -
16 CP 0 - - -
16 IP/CP 10 153.80 197.16 260.47
16 BP-df-1 9 122.47 866.13 1770.94
16 BP-bv-1 9 119.37 827.90 1645.91
16 BP-df-2 8 121.42 662.81 1377.21
16 BP-bv-2 9 119.38 631.30 1382.13



11

rather large memory consumption since all patterns are generated initially. For instances with 16 teams, it

generates up to 85000 patterns and uses approximately 200 MB of memory.

The computation times of the branch and price algorithm are highly dependent on the size of the branch-

ing tree and we see that there is an order of magnitude in difference between the minimum and maximum

time. This means that the algorithm is only competitive with the hybrid IP/CP approach when an integer

solution is found relatively fast in the branching tree.

The slowness of the branch and price approach is somewhat surprising. The vast majority of the patterns

generated by the hybrid IP/CP approach are never used, so it seems advantageous to generate them as

needed, as the branch and price approach does. For some instances, this indeed is a good thing: the fastest

instances do solve faster than the hybrid approach. But for many instances, it appears that the columns

being generated are the not the right ones. This appears to lead to lots of branching that is wasting time

without moving towards optimality. Still, the branch and price approach may be practical in cases where

the number of patterns generated is too large for the hybrid approach. So, for the 18 team instances, while

none of the approaches were able to solve these instances within the given time limit, the hybrid IP/CP

approach is quite impractical due to the 246,000 patterns generated. Branch and Price is able to at least

generate feasible solutions even if optimal solutions cannot be found.

6 The Traveling Tournament Problem

In this section we present a new heuristic solution method for solving the TTP. This method, called the

circular traveling salesman approach (CTSA), obtains solutions by combining solutions for the traveling

salesman problem with solutions for the circular distance TTP. Furthermore, we show how the CTSA can

be extended by solving the TCDMP afterwards in which case we will refer to it as the extended circular

traveling salesman approach (ECTSA).

One of the main problems when solving the TTP is the fact that the travel distance is heavily affected by

both the timetable and the pattern set. This makes it very hard to find a good decomposition of the problem

and, without a decomposition approach, the problem is too hard to solve using exact solution methods even

for instances with only eight teams. This has led to a number of highly specialized metaheuristic solution

methods capable of finding very good solutions for all the instance classes of the TTP outlined at [23].

However, such algorithms are often cumbersome to implement and it may take a lot of fine tuning to obtain

the best schedules.

The strength of the CTSA presented here is the fact that it is very simple to implement, solutions are

found almost instantaneously and the solutions are not far from the best solutions currently found for the

benchmark instances of the TTP. The basic idea is to use a two step approach. Step 1 approximates an

instance of the TTP by an instance of the circular distance TTP, while Step 2 uses a solution for the circular

distance TTP to obtain a solution for the TTP. The approximation is performed by finding the optimal

traveling salesman tour through all the venues and then distributing the teams evenly on a circle with

circumference n according to the order of the traveling salesman tour. This forms an instance of the circular

distance TTP and by using a solution for this instance we have a schedule for the original TTP. This process

is illustrated in figure 6.1.

The approach can be outlined as follows.



12

Fig. 6.1. Using the Circular TTP (CTTP) to approximate the TTP

The circular traveling salesman approach.

Step 1 Solve the traveling salesman problem for the teams in the tournament to give an ordering of the

teams.

Step 2 Solve the circular distance TTP with teams ordered according to the solution from Step 1 and use

the resulting schedule to calculate the travel distance when the real distance matrix is used.

The TSP from Step 1 is solved using a standard solution method. The problem is solved without the subtour

elimination constraints and, in case the solution contains subtours, cuts are added and the problem is solved

again. This process continues until a feasible solution has been obtained.

In Step 2, we do not actually solve the circular distance TTP since the currently best solutions for the

problem, presented at [23], can be used. Note that there is only one circular distance TTP instance for each

size of problem, so this ”pre-processing” can be done once for every size n.

In this step, the team ordering 1,2,. . . ,n and the ordering n,1,2,. . . ,n-1 leads to the same objective value

of the circular distance TTP - but they result in different schedules and hence different travel distances for

the original TTP. This means that we are able to obtain 2n solutions from the TSP solution by rotating

the original ordering and reversing the ordering. For example, the ordering 1,2,3, also leads to the orderings:

2,3,1; 3,1,2 and the reverse orderings 3,2,1; 2,1,3 and 1,3,2.

The CTSA has been tested on the benchmark instances: NL6, NL8,. . . , NL16 which can be found at [23]

together with corresponding solutions. In Step 2 we need solutions for the circular distance TTP with 6 to

16 teams. For the instance with 10 teams, we use the solution by Langford found at [23] and for all other

instances, we use the solutions obtained by Lim, Rodrigues, and Zhang [14]. In order to examine the effect of

the 2n orderings, we have solved the problem for each ordering. The results are displayed in Table 6.1 which

gives the best known upper and lower bound on the optimal travel distance, together with the maximum,

minimum and average travel distance found by the CTSA for the 2n orderings. The solution method has

been implemented in OPL script and it took less than 0.5 second to solve the TSP in all instances.

Keeping the simpleness of the CTSA in mind, the solutions are surprisingly close to the current upper

bound. In addition, to be used as final schedules, the solutions can also be used as initial starting points in

some of the metaheuristic approaches for the TTP. Lim et al. [14] use a beam search algorithm for obtaining

initial solutions in their simulated annealing algorithm. But although the solutions obtained by the CTSA

can be found almost instantaneously, the quality is comparable to the beam search. For comparison, Table 6.2

displays the computational results of the beam search algorithm reported in [14] found on a 2.53 GHz Pentium

4 PC with 512 MB of RAM.



13

Table 6.1. Computational results of the CTSA

Travel distance

Instance LB UB Minimum Maximum Average

NL6 23916 23916 24467 26472 25559.8

NL8 39479 39721 41754 44028 42822.5

NL10 57500 59436 63844 67943 66106.7

NL12 107483 111248 116598 124975 121339.8

NL14 182797 189759 216659 230463 223925.1

NL16 248852 267194 288674 307925 295858.3

Table 6.2. Computational results of the beam search algorithm reported in [14].

Travel distance Time (s)

Instance Minimum Maximum Average Minimum Maximum Average

NL6 24579 25146 24802.8 576 669 628.5

NL8 41265 42334 41852.6 3211 3443 3345.0

NL10 63337 65856 64544.2 5801 6299 6179.6

NL12 118047 123770 120528.8 8009 8730 8594.0

NL14 202916 208797 205929.3 10332 10947 10806.4

NL16 283795 295864 289235.2 12855 13889 13631.2

In order to improve the solutions of the CTSA, it is possible to add a Step 3 in which the pattern

set is improved if possible. This is done by solving the TCDMP, given the original distance matrix and the

timetable found in Step 2, to obtain the optimal pattern set given the timetable. The results for this extended

version ECTSA are reported in Table 6.3 together with the computation times. Notice that the computation

times are mainly due to the time needed to solve the TCDMP.

Table 6.3. Computational results of the ECTSA.

Travel distance Time (s)

Instance Minimum Maximum Average Minimum Maximum Average

NL6 24467 26255 25401.5 0.05 0.19 0.07

NL8 41754 44028 42822.5 0.36 0.39 0.37

NL10 63277 66080 64635.6 2.47 2.74 2.55

NL12 116421 124588 120838.1 11.39 20.66 12.60

NL14 215665 230463 223586.9 48.71 58.07 50.43

NL16 288674 307925 295628.5 239.90 294.30 246.44

Since the pattern set and the timetable are already optimized in the solution of the circular distance,

only marginal reductions can be obtained by solving the TCDMP. However, in case the obtained solutions

will be used as final schedules, it might be worth spending the additional computation time required by the

ECTSA. Although the ECTSA uses much more computation time than the CTSA it is still substantially

faster than the beam search.



14

7 Conclusion

In this paper we have defined the TCDMP applicable for double round robin tournaments in which the

timetable is determined before the pattern set and the total travel distance must be minimized. The problem

is formulated as an IP model and a CP model and the computation times used to solve these models are

compared with the time needed to solve two specialized algorithms. The first of the two algorithms is a hybrid

IP/CP approach and the computational results show that this is the best of the four solution methods. The

second algorithm is a branch and price algorithm and although the computational results are not as good as

the hybrid approach it does provide solutions to almost all the instances.

Furthermore, we present the heuristic solution method CTSA for the TTP capable of finding high quality

solutions in very short time. The speed of this approach makes it very well suited for obtaining initial solutions

which can be used in the metaheuristic solution methods for the TTP. An interesting direction for future

research would be to test the effect of using this kind of initial solutions.

We have evaluated the effect of solving the TCDMP after having applied the CTSA and in some cases

the extended approach is able to improve the solutions. However, solving the TCDMP takes a relatively

long time compared to the time needed in the CTSA and the improvements may not justify this increase

in computation time. Nevertheless, the CTSA presents one way of obtaining a good timetable for which

the TCDMP can be applied. Finding new ways of obtaining such timetables and perhaps better timetables

would be a very interesting challenge.

References

[1] A. Anagnostopoulos, L. Michel, P. Van Hentenryck, and Y. Vergados. A simulated annealing approach

to the traveling tournament problem. In Proceedings CPAIOR’03, Montreal, 2003.

[2] C. Barnhart, E.L. Johnson, G.L Nemhauser, M.W.P Savelsbergh, and P.H. Vance. Branch-and-price:

Column generation for huge integer programs. Operations Research, 46:316–329, 1998.

[3] T. Benoist, F. Laburthe, and B. Rottembourg. Lagrange relaxation and constraint programming collab-

orative schemes for traveling tournament problem. In Proceedings CPAIOR’01, Wye College (Imperial

College), Ashford, Kent UK, 2001.

[4] F. Della Croce and D. Oliveri. Scheduling the italian football league: an ilp-based approach. Computers

and Operations Research, 33(7):1963–1974, 2006.

[5] K. Easton, G. Nemhauser, and M. Trick. The traveling tournament problem: Description and bench-

marks. In Proceedings CP’01, volume 2239 of Lecture Notes in Computer Science, pages 580–585.

Springer, 2001.

[6] K. Easton, G. Nemhauser, and M. Trick. Solving the traveling tournament problem: a combined integer

programming and constraint programming approach. In E. Burke and P. De Causmaecker, editors,

PATAT 2002, volume 2740 of Lecture Notes in Computer Science, pages 100–109. Springer, 2003.

[7] M. Elf, M. Jünger, and G. Rinaldi. Minimizing breaks by maximizing cuts. Operations Research Letters,

31:343–349, 2003.

[8] M. Henz. Scheduling a major college basketball conference - revisited. Operations Research, 49:163–168,

2001.



15

[9] M. Henz. Constraint-based round robin tournament planning. In D. De Schreye, editor, Proceedings

of the International Conference on Logic Programming, Las Cruces, New Mexico, pages 545–557. MIT

Press, 1999.

[10] M. Henz, T. Müller, and S. Thiel. Global constraints for round robin tournament scheduling. European

Journal of Operational Research, 153:92–101, 2004.

[11] ILOG OPL Studio 3.7, Language Manual. ILOG, 2003.

[12] Inc. ILOG. CPLEX 9.0 User Manual. ILOG, 2003.

[13] Inc. ILOG. ILOG Solver 5.0 User’s Manual and Rference Manual. ILOG, 2000.

[14] A. Lim, B. Rodrigues, and X. Zhang. A simulated annealing and hill-climbing algorithm for the traveling

tournament problem. European Journal of Operational Research (In press).

[15] R. Miyashiro and T. Matsui. Semidefinite programming based approaches to the break minimization

problem. Computers and Operations Research, 33(7):1975–1982, 2006.

[16] G.L. Nemhauser and M.A. Trick. Scheduling a major college basketball conference. Operations Research,

46(1):1–8, 1998.

[17] R.V. Rasmussen and M.A. Trick. A Benders approach for the constrained minimum break problem.

European Journal of Operational Research (In Press).

[18] J.-C. Régin. Minimization of the number of breaks in sports scheduling problems using constraint

programming. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 57:115–

130, 2001.

[19] J.-C. Regin and J.-F. Puget. A filtering algorithm for global sequencing constraints. In Proceedings

CP’97, volume 1330 of LNCS. Springer, 1997.

[20] C.C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament problem. European

Journal of Operational Research (In press).

[21] A. Schaerf. Scheduling sport tournaments using constraint logic programming. Constraints, 4:43–65,

1999.

[22] M. Trick. A schedule-then-break approach to sports timetabling. In E. Burke and W. Erben, editors,

PATAT 2000, volume 2079 of Lecture Notes in Computer Science, pages 242–252. Springer, 2001.

[23] M.A. Trick. Michael trick’s guide to sports scheduling. URL

http://mat.tepper.cmu.edu/sports/Instances/.

[24] P. Van Hentenryck and Y. Vergados. Traveling tournament scheduling: A systematic evaluation of

simulated annealing. In J.C. Beck and B.M. Smith, editors, Lecture Notes in Computer Science, volume

3990, pages 167–181. Springer-Verlag Berlin Heidelberg 2006, 2006.

[25] W.-J. van Hoeve, G. Pesant, L.-M. Rousseau, and A. Sabharwal. Revisiting the sequence constraint. In

Proceedings CP’06, volume 4204 of LNCS. Springer, 2006.


